ترغب بنشر مسار تعليمي؟ اضغط هنا

To determine and analyze arbitrary left non-degenerate set-theoretic solutions of the Yang-Baxter equation (not necessarily bijective), we introduce an associative algebraic structure, called a YB-semitruss, that forms a subclass of the category of s emitrusses as introduced by Brzezinski. Fundamental examples of YB-semitrusses are structure monoids of left non-degenerate set-theoretic solutions and (skew) left braces. Gateva-Ivanova and Van den Bergh introduced structure monoids and showed their importance (as well as that of the structure algebra) for studying involutive non-degenerate solutions. Skew left braces were introduced by Guarnieri, Vendramin and Rump to deal with bijective non-degenerate solutions. Hence, YB-semitrusses also yield a unified treatment of these different algebraic structures. The algebraic structure of YB-semitrusses is investigated, and as a consequence, it is proven, for example, that any finite left non-degenerate set-theoretic solution of the Yang-Baxter equation is right non-degenerate if and only if it is bijective. Furthermore, it is shown that some finite left non-degenerate solutions can be reduced to non-degenerate solutions of smaller size. The structure algebra of a finitely generated YB-semitruss is an algebra defined by homogeneous quadratic relations. We prove that it often is a left Noetherian algebra of finite Gelfand-Kirillov dimension that satisfies a polynomial identity, but in general, it is not right Noetherian.
262 - Eric Jespers 2020
During the past three decades fundamental progress has been made on constructing large torsion-free subgroups (i.e. subgroups of finite index) of the unit group $U (Z G)$ of the integral group ring $Z G$ of a finite group $G$. These constructions rel y on explicit constructions of units in $Z G$ and proofs of main results make use of the description of the Wedderburn components of the rational group algebra $Q G$. The latter relies on explicit constructions of primitive central idempotents and the rational representations of $G$. It turns out that the existence of reduced two degree representations play a crucial role. Although the unit group is far from being understood, some structure results on this group have been obtained. In this paper we give a survey of some of the fundamental results and the essential needed techniques.
Given a set-theoretic solution $(X,r)$ of the Yang--Baxter equation, we denote by $M=M(X,r)$ the structure monoid and by $A=A(X,r)$, respectively $A=A(X,r)$, the left, respectively right, derived structure monoid of $(X,r)$. It is shown that there ex ist a left action of $M$ on $A$ and a right action of $M$ on $A$ and 1-cocycles $pi$ and $pi$ of $M$ with coefficients in $A$ and in $A$ with respect to these actions respectively. We investigate when the 1-cocycles are injective, surjective or bijective. In case $X$ is finite, it turns out that $pi$ is bijective if and only if $(X,r)$ is left non-degenerate, and $pi$ is bijective if and only if $(X,r)$ is right non-degenerate. In case $(X,r) $ is left non-degenerate, in particular $pi$ is bijective, we define a semi-truss structure on $M(X,r)$ and then we show that this naturally induces a set-theoretic solution $(bar M, bar r)$ on the least cancellative image $bar M= M(X,r)/eta$ of $M(X,r)$. In case $X$ is naturally embedded in $M(X,r)/eta$, for example when $(X,r)$ is irretractable, then $bar r$ is an extension of $r$. It also is shown that non-degenerate irretractable solutions necessarily are bijective.
Let $f$ be a polynomial in the free algebra over a field $K$, and let $A$ be a $K$-algebra. We denote by $S_A(f)$, $A_A(f)$ and $I_A(f)$, respectively, the `verbal subspace, subalgebra, and ideal, in $A$, generated by the set of all $f$-values in $A$ . We begin by studying the following problem: if $S_A(f)$ is finite-dimensional, is it true that $A_A(f)$ and $I_A(f)$ are also finite-dimensional? We then consider the dual to this problem for `marginal subspaces that are finite-codimensional in $A$. If $f$ is multilinear, the marginal subspace, $widehat{S}_A(f)$, of $f$ in $A$ is the set of all elements $z$ in $A$ such that $f$ evaluates to 0 whenever any of the indeterminates in $f$ is evaluated to $z$. We conclude by discussing the relationship between the finite-dimensionality of $S_A(f)$ and the finite-codimensionality of $widehat{S}_A(f)$.
For a finite involutive non-degenerate solution $(X,r)$ of the Yang--Baxter equation it is known that the structure monoid $M(X,r)$ is a monoid of I-type, and the structure algebra $K[M(X,r)]$ over a field $K$ share many properties with commutative p olynomial algebras, in particular, it is a Noetherian PI-domain that has finite Gelfand--Kirillov dimension. In this paper we deal with arbitrary finite (left) non-degenerate solutions. Although the structure of both the monoid $M(X,r)$ and the algebra $K[M(X,r)]$ is much more complicated than in the involutive case, we provide some deep insights. In this general context, using a realization of Lebed and Vendramin of $M(X,r)$ as a regular submonoid in the semidirect product $A(X,r)rtimesmathrm{Sym}(X)$, where $A(X,r)$ is the structure monoid of the rack solution associated to $(X,r)$, we prove that $K[M(X,r)]$ is a module finite normal extension of a commutative affine subalgebra. In particular, $K[M(X,r)]$ is a Noetherian PI-algebra of finite Gelfand--Kirillov dimension bounded by $|X|$. We also characterize, in ring-theoretical terms of $K[M(X,r)]$, when $(X,r)$ is an involutive solution. This characterization provides, in particular, a positive answer to the Gateva-Ivanova conjecture concerning cancellativity of $M(X,r)$. These results allow us to control the prime spectrum of the algebra $K[M(X,r)]$ and to describe the Jacobson radical and prime radical of $K[M(X,r)]$. Finally, we give a matrix-type representation of the algebra $K[M(X,r)]/P$ for each prime ideal $P$ of $K[M(X,r)]$. As a consequence, we show that if $K[M(X,r)]$ is semiprime then there exist finitely many finitely generated abelian-by-finite groups, $G_1,dotsc,G_m$, each being the group of quotients of a cancellative subsemigroup of $M(X,r)$ such that the algebra $K[M(X,r)]$ embeds into $mathrm{M}_{v_1}(K[G_1])timesdotsbtimes mathrm{M}_{v_m}(K[G_m])$.
Let $r:X^{2}rightarrow X^{2}$ be a set-theoretic solution of the Yang-Baxter equation on a finite set $X$. It was proven by Gateva-Ivanova and Van den Bergh that if $r$ is non-degenerate and involutive then the algebra $Klangle x in X mid xy =uv mbox { if } r(x,y)=(u,v)rangle$ shares many properties with commutative polynomial algebras in finitely many variables; in particular this algebra is Noetherian, satisfies a polynomial identity and has Gelfand-Kirillov dimension a positive integer. Lebed and Vendramin recently extended this result to arbitrary non-degenerate bijective solutions. Such solutions are naturally associated to finite skew left braces. In this paper we will prove an analogue result for arbitrary solutions $r_B$ that are associated to a left semi-brace $B$; such solutions can be degenerate or can even be idempotent. In order to do so we first describe such semi-braces and we prove some decompositions results extending results of Catino, Colazzo, and Stefanelli.
Several aspects of relations between braces and non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation are discussed and many consequences are derived. In particular, for each positive integer $n$ a finite square-free multiperm utation solution of the Yang-Baxter equation with multipermutation level $n$ and an abelian involutive Yang-Baxter group is constructed. This answers a problem of Gateva-Ivanova and Cameron. It is also proved that finite non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation whose associated involutive Yang-Baxter group is abelian are retractable in the sense of Etingof, Schedler and Soloviev. Earlier the authors proved this with the additional square-free hypothesis on the solutions. Retractability of solutions is also proved for finite square-free non-degenerate involutive set-theoretic solutions associated to a left brace.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا