ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the detection of four extrasolar planets orbiting evolved intermediate-mass stars from a precise Doppler survey of G and K giants at Okayama Astrophysical Observatory. All of the host stars are considered to be formerly early F-type or A -type dwarfs when they were on the main sequence. 14 And (K0 III) is a clump giant with a mass of 2.2 M_solar and has a planet of minimum mass m_2sin i=4.8 M_Jup in a nearly circular orbit with a 186 day period. This is one of the innermost planets around evolved intermediate-mass stars and such planets have only been discovered in clump giants. 81 Cet (G5 III) is a clump giant with 2.4 M_solar hosting a planet of m_2sin i=5.3 M_Jup in a 953 day orbit with an eccentricity of e=0.21. 6 Lyn (K0 IV) is a less evolved subgiant with 1.7 M_solar and has a planet of m_2sin i=2.4 M_Jup in a 899 day orbit with e=0.13. HD 167042 (K1 IV) is also a less evolved star with 1.5 M_solar hosting a planet of m_2sin i=1.6 M_Jup in a 418 day orbit with e=0.10. This planet was independently announced by Johnson et al. (2008, ApJ, 675, 784). All of the host stars have solar or sub-solar metallicity, which supports the lack of metal-rich tendency in planet-harboring giants in contrast to the case of dwarfs.
We report the detection of 3 new extrasolar planets from the precise Doppler survey of G and K giants at Okayama Astrophysical Observatory. The host stars, namely, 18 Del (G6 III), xi Aql (K0 III) and HD 81688 (K0 III-IV), are located at the clump re gion on the HR diagram with estimated masses of 2.1-2.3 M_solar. 18 Del b has a minimum mass of 10.3 M_Jup and resides in a nearly circular orbit with period of 993 days, which is the longest one ever discovered around evolved stars. xi Aql b and HD 81688 b have minimum masses of 2.8 and 2.7 M_Jup, and reside in nearly circular orbits with periods of 137 and 184 days, respectively, which are the shortest ones among planets around evolved stars. All of the substellar companions ever discovered around possible intermediate-mass (1.7-3.9 M_solar) clump giants have semimajor axes larger than 0.68 AU, suggesting the lack of short-period planets. Our numerical calculations suggest that Jupiter-mass planets within about 0.5 AU (even up to 1 AU depending on the metallicity and adopted models) around 2-3 M_solar stars could be engulfed by the central stars at the tip of RGB due to tidal torque from the central stars. Assuming that most of the clump giants are post-RGB stars, we can not distinguish whether the lack of short-period planets is primordial or due to engulfment by central stars. Deriving reliable mass and evolutionary status for evolved stars is highly required for further investigation of formation and evolution of planetary systems around intermediate-mass stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا