ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a first-principles electronic-structure calculation on C and BN hybrid zigzag nanoribbons. We find that half-metallicity can arise in the hybrid nanoribbons even though stand-alone C or BN nanoribbon possesses a finite band gap. This unexpe cted half-metallicity in the hybrid nanos-tructures stems from a competition between the charge and spin polarizations, as well as from the pi orbital hybridization between C and BN. Our results point out a possibility of making spintronic devices solely based on nanoribbons and a new way of designing metal-free half metals.
At B3LYP level of theory, we predict that the half-metallicity in zigzag edge graphene nanoribbon (ZGNR) can be realized when an external electric field is applied across the ribbon. The critical electric field to induce the half-metallicity decrease s with the increase of the ribbon width. Both the spin polarization and half-metallicity are removed when the edge state electrons fully transferred from one side to the other under very strong electric field. The electric field range under which ZGNR remain half-metallic increases with the ribbon width. Our study demonstrates a rich field-induced spin polarization behavior, which may leads to some important applications in spinstronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا