ترغب بنشر مسار تعليمي؟ اضغط هنا

This chapter takes a microscopic view of quantum tunneling of magnetization (QTM) in single-molecule magnets (SMMs), focusing on the interplay between exchange and anisotropy. Careful consideration is given to the relationship between molecular symme try and the symmetry of the spin Hamiltonian that dictates QTM selection rules. Higher order interactions that can modify the usual selection rules are shown to be very sensitive to the exchange strength. In the strong coupling limit, the spin Hamiltonian possess rigorous $D_{2h}$ symmetry (or $C_{infty}$ in high-symmetry cases). In the case of weaker exchange, additional symmetries may emerge through mixing of excited spin states into the ground state. Group theoretic arguments are introduced to support these ideas, as are extensive results of magnetization hysteresis and electron paramagnetic resonance measurements.
We present here an exact version of our response (dated April 27) to Wernsdorfers correspondence submitted to Nature Physics on March 31, 2008. After consultation with a referee, Nature Physics chose not publish any part of this exchange. We would th erefore like to point out that our original study has now been considered favorably by four separate referees chosen by Nature Physics. Unfortunately, Wernsdorfer subsequently posted two further variations of his correspondence on this archive (arXiv:0804.1246v1 and arXiv:0804.1246v2). We note that aspects of the most recent posting (dated after submission of our response) contradict the version submitted to Nature Physics. However, none of the revisions add weight to Wernsdorfers original correspondence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا