ترغب بنشر مسار تعليمي؟ اضغط هنا

The 5th edition of the Roma-BZCAT Multifrequency Catalogue of Blazars is available in a printed version and online at the ASDC website (http://www.asdc.asi.it/bzcat); it is also in the NED database. It presents several relevant changes with respect t o the past editions which are briefly described in this paper.
We selected a sample of 437 BL Lac objects, taken from the RomaBZCat catalogue, for which spectroscopic information and SDSS photometry is available. We propose a new classification of BL Lacs in which the sources type is not defined only on the basi s of the peak frequency of the synchrotron component in their Spectral Energy Distribution (types L and H), but also on the relevance of this component with respect to the brightness of the host galaxy (types N and G, for nuclear or galaxy dominated sources). We found that the SDSS colour index u-r=1.4 is a good separator between these two types. We used multiband colour-colour plots to study the properties of the BL Lac classes and found that in the X-ray to radio flux ratio vs u-r plot most of the N (blue) sources are located in a rather narrow strip, while the G-sources (red) are spread in a large area, and most of them are located in galaxy clusters or interacting systems, suggesting that their X-ray emission is not from a genuine BL Lac nucleus but it is related to their environment. Of the about 135 sources detected in the gamma-rays by Fermi-GST, nearly all belong to the N-type, indicating that only this type of sources should be considered as genuine BL Lac nuclei. The J-H, H-K plot of sources detected in the 2MASS catalogue is consistent with that of the bona fide BL Lac objects, independently of their N or G classification from the optical indices, indicating the existence in G-type sources of a K-band excess possibly due to a steep, low frequency peaked emission which deserves further investigations. We propose to use these colour plots as a further tool for searching candidate counterparts of newly discovered high-energy sources.
We developed a source detection algorithm based on the Minimal Spanning Tree (MST), that is a graph-theoretical method useful for finding clusters in a given set of points. This algorithm is applied to gamma-ray bidimensional images where the points correspond to the arrival direction of photons, and the possible sources are associated with the regions where they clusterize. Some filters to select these clusters and to reduce the spurious detections are introduced. An empirical study of the statistical properties of MST on random fields is carried in order to derive some criteria to estimate the best filter values. We introduce also two parameters useful to verify the goodness of candidate sources. To show how the MST algorithm works in the practice, we present an application to an EGRET observation of the Virgo field, at high galactic latitude and with a low and rather uniform background, in which several sources are detected.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا