ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a telegraph process with elastic boundary at the origin studied recently in the literature. It is a particular random motion with finite velocity which starts at $xgeq 0$, and its dynamics is determined by upward and downward switching ra tes $lambda$ and $mu$, with $lambda>mu$, and an absorption probability (at the origin) $alphain(0,1]$. Our aim is to study the asymptotic behavior of the absorption time at the origin with respect to two different scalings: $xtoinfty$ in the first case; $mutoinfty$, with $lambda=betamu$ for some $beta>1$ and $x>0$, in the second case. We prove several large and moderate deviation results. We also present numerical estimates of $beta$ based on an asymptotic Normality result for the case of the second scaling.
In this paper we characterize the distribution of the first exit time from an arbitrary open set for a class of semi-Markov processes obtained as time-changed Markov processes. We estimate the asymptotic behaviour of the survival function (for large $t$) and of the distribution function (for small $t$) and we provide some conditions for absolute continuity. We have been inspired by a problem of neurophyshiology and our results are particularly usefull in this field, precisely for the so-called Leacky Integrate-and-Fire (LIF) models: the use of semi-Markov processes in these models appear to be realistic under several aspects, e.g., it makes the intertimes between spikes a r.v. with infinite expectation, which is a desiderable property. Hence, after the theoretical part, we provide a LIF model based on semi-Markov processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا