ترغب بنشر مسار تعليمي؟ اضغط هنا

69 - David H. Cohen 2014
We quantitatively investigate the extent of wind absorption signatures in the X-ray grating spectra of all non-magnetic, effectively single O stars in the Chandra archive via line profile fitting. Under the usual assumption of a spherically symmetric wind with embedded shocks, we confirm previous claims that some objects show little or no wind absorption. However, many other objects do show asymmetric and blue shifted line profiles, indicative of wind absorption. For these stars, we are able to derive wind mass-loss rates from the ensemble of line profiles, and find values lower by an average factor of 3 than those predicted by current theoretical models, and consistent with H-alpha if clumping factors of f_cl ~ 20 are assumed. The same profile fitting indicates an onset radius of X-rays typically at r ~ 1.5 R_star, and terminal velocities for the X-ray emitting wind component that are consistent with that of the bulk wind. We explore the likelihood that the stars in the sample that do not show significant wind absorption signatures in their line profiles have at least some X-ray emission that arises from colliding wind shocks with a close binary companion. The one clear exception is zeta Oph, a weak-wind star that appears to simply have a very low mass-loss rate. We also reanalyse the results from the canonical O supergiant zeta Pup, using a solar-metallicity wind opacity model and find Mdot = 1.8 times 10^{-6} M_sun/yr, consistent with recent multi-wavelength determinations.
We fit every emission line in the high-resolution Chandra grating spectrum of zeta Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of sixteen lines or line comple xes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau_* = kappa*Mdot/4{pi}R_{ast}v_{infty}, and place confidence limits on this parameter. These sixteen lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau_* with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau_*, reflected in the rather modest asymmetry in the line profiles, can moreover all be fit simultaneously by simply assuming a moderate mass-loss rate of 3.5 pm 0.3 times 10^{-6} Msun/yr, without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of two. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H-alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and galactic evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا