ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar mass black holes ($sim$3$-$20 solar masses, M$_odot$) as well as supermassive black holes ($sim$10$^6$$-$10$^9$ M$_odo t$) found in the centres of most galaxies. Jets should also be produced by intermediate mass black holes ($sim$10$^2$$-$10$^5$ M$_odot$), although evidence for this third class of black hole has until recently been weak. We report the detection of transient radio emission at the location of the intermediate mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between $sim$9 $times$10$^{3}$ M$_odot$ and $sim$9 $times$10$^{4}$ M$_odot$.
The extreme ULIRG F00183-7111 has recently been found to have a radio-loud AGN with jets in its centre, representing an extreme example of the class of radio-loud AGNs buried within dusty star-forming galaxies. This source appears to be a rare exampl e of a ULIRG glimpsed in the (presumably) brief period as it changes from quasar mode to radio mode activity. Such transition stages probably account for many of the high-redshift radio-galaxies and extreme high-redshift ULIRGs, and so this object at the relatively low redshift of 0.328 offers a rare opportunity to study this class of objects in detail. We have also detected the CO signal from this galaxy with the ATCA, and here describe the implications of this detection for future ULIRG studies.
F00183-7111 is one of the most extreme Ultra-Luminous Infrared Galaxies known. Here we present a VLBI image which shows that F00183-7111 is powered by a combination of a radio-loud Active Galactic Nucleus surrounded by vigorous starburst activity. Al though already radio-loud, the quasar jets are only 1.7 kpc long, boring through the dense gas and starburst activity that confine them. We appear to be witnessing this remarkable source in the brief transition period between merging starburst and radio-loud quasar-mode accretion.
One of our closest neighbours, the Andromeda Galaxy (M31) has been the subject of numerous large area studies across the entire spectrum, but so far full-disk radio surveys have been conducted only at low resolution. The new wide-field capabilities o f the DiFX software correlator present the possibility of imaging the entire primary beam of a VLBI array, thus enabling a high resolution wide-field study of the entire galaxy. Using the VLBA and EVN, pilot observations of M31 have been carried out with the aim of using these new wide-field techniques to characterise the population of compact components at VLBI resolution both within and behind one of our nearest neighbours. This contribution describes the observations carried out, the preliminary processing and first results.
We report on the first wide-field, very long baseline interferometry (VLBI) survey at 90 cm. The survey area consists of two overlapping 28 deg^2 fields centred on the quasar J0226+3421 and the gravitational lens B0218+357. A total of 618 sources wer e targeted in these fields, based on identifications from Westerbork Northern Sky Survey (WENSS) data. Of these sources, 272 had flux densities that, if unresolved, would fall above the sensitivity limit of the VLBI observations. A total of 27 sources were detected as far as 2 arcdegrees from the phase centre. The results of the survey suggest that at least 10% of moderately faint (S~100 mJy) sources found at 90 cm contain compact components smaller than ~0.1 to 0.3 arcsec and stronger than 10% of their total flux densities. A ~90 mJy source was detected in the VLBI data that was not seen in the WENSS and NRAO VLA Sky Survey (NVSS) data and may be a transient or highly variable source that has been serendipitously detected. This survey is the first systematic (and non-biased), deep, high-resolution survey of the low-frequency radio sky. It is also the widest field of view VLBI survey with a single pointing to date, exceeding the total survey area of previous higher frequency surveys by two orders of magnitude. These initial results suggest that new low frequency telescopes, such as LOFAR, should detect many compact radio sources and that plans to extend these arrays to baselines of several thousand kilometres are warranted.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا