ترغب بنشر مسار تعليمي؟ اضغط هنا

In this chapter we review the properties of the Orion outlying clouds at b < -21 degrees. These clouds are located far off the Orion giant molecular cloud complex and are in most cases small cometary-shaped clouds, with their head pointing back towar ds the main Orion clouds. A wealth of data indicate that star formation is ongoing in many of these clouds. The star formation in these regions might have been triggered due to the strong impact of the massive stars in the Orion OB association. Some of the clouds discussed here may be part of the Orion-Eridanus bubble. An overview on each individual cloud is given. A synthesis of the Pre-Main Sequence stars discovered in these clouds is presented. We also discuss the millimeter and centimeter data and present a review of the outflows and Herbig-Haro objects so far discovered in these clouds.
We discuss the results of the optical spectroscopic follow-up of pre-main sequence (PMS) objects and candidates selected in the Chamaeleon II dark cloud based on data from the Spitzer Legacy survey From Molecular Cores to Planet Forming Disks (c2d) a nd from previous surveys. Our sample includes both objects with infrared excess selected according to c2d criteria and referred to as Young Stellar Objects and other cloud members and candidates selected from complementary optical and near-infrared data. We characterize the sample of objects by deriving their physical parameters. The vast majority of objects have masses < 1 solar mass and ages < 6 Myr. Several of the PMS objects and candidates lie very close to or below the Hydrogen-burning limit. A first estimate of the slope of the Initial Mass Function in Cha II is consistent with that of other T associations. The star formation efficiency in the cloud (1-4%) is consistent with our own estimates for Taurus and Lupus, but significantly lower than for Cha I. This might mean that different star-formation activities in the Chamaeleon clouds may reflect a different history of star formation. We also find that the Cha II cloud is turning some 8 solar masses into stars every Myr, which is less than the star formation rate in the other c2d clouds. However, the star formation rate is not steady and evidence is found that the star formation in Cha II might have occurred very rapidly. The H_alpha emission of the Cha II PMS objects, as well as possible correlations between their stellar and disk properties, are also investigated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا