ترغب بنشر مسار تعليمي؟ اضغط هنا

A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f rom an AGB binary companion. Here we investigate and compare the binary properties of three carbon-enhanced sub-classes: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ~100% binary fraction with a shorter period distribution of at maximum ~20,000 days. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no dataset is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the Solar Neighbourhood.
We present abundances for seven stars in the (extremely) low-metallicity tail of the Sculptor dwarf spheroidal galaxy, from spectra taken with X-shooter on the ESO VLT. Targets were selected from the Ca II triplet (CaT) survey of the Dwarf Abundances and Radial Velocities Team (DART) using the latest calibration. Of the seven extremely metal-poor candidates, five stars are confirmed to be extremely metal-poor (i.e., [Fe/H]<-3 dex), with [Fe/H]=-3.47 +/- 0.07 for our most metal-poor star. All are around or below [Fe/H]=-2.5 dex from the measurement of individual Fe lines. These values are in agreement with the CaT predictions to within error bars. None of the seven stars is found to be carbon-rich. We estimate a 2-13% possibility of this being a pure chance effect, which could indicate a lower fraction of carbon-rich extremely metal-poor stars in Sculptor compared to the Milky Way halo. The [alpha/Fe] ratios show a range from +0.5 to -0.5, a larger variation than seen in Galactic samples although typically consistent within 1-2sigma. One star seems mildly iron-enhanced. Our program stars show no deviations from the Galactic abundance trends in chromium and the heavy elements barium and strontium. Sodium abundances are, however, below the Galactic values for several stars. Overall, we conclude that the CaT lines are a successful metallicity indicator down to the extremely metal-poor regime and that the extremely metal-poor stars in the Sculptor dwarf galaxy are chemically more similar to their Milky Way halo equivalents than the more metal-rich population of stars.
Current models of galaxy formation predict that galaxy pairs of comparable magnitudes should become increasingly rare with decreasing luminosity. This seems at odds with the relatively high frequency of pairings among dwarf galaxies in the Local Grou p. We use literature data to show that ~30% of all satellites of the Milky Way and Andromeda galaxies brighter than M_V=-8 are found in likely physical pairs of comparable luminosity. Besides the previously recognised pairings of the Magellanic Clouds and of NGC 147/NGC 185, other candidate pairs include the Ursa Minor and Draco dwarf spheroidals, as well as the And I/And III satellites of M31. These pairs are much closer than expected by chance if the radial and angular distributions of satellites were uncorrelated; in addition, they have very similar line-of-sight velocities and luminosities that differ by less than three magnitudes. In contrast, the same criteria pair fewer than 4% of satellites in N-body/semi-analytic models that match the radial distribution and luminosity function of Local Group satellites. If confirmed in studies of larger samples, the high frequency of dwarf galaxy pairings may provide interesting clues to the formation of faint galaxies in the current cosmological paradigm.
We combine the six high-resolution Aquarius dark matter simulations with a semi-analytic galaxy formation model to investigate the properties of the satellites of Milky Way-like galaxies. We find good correspondence with the observed luminosity funct ion, luminosity-metallicity relation and radial distribution of the Milky Way satellites. The star formation histories of the dwarf galaxies in our model vary widely, in accordance with what is seen observationally. Ram-pressure stripping of hot gas from the satellites leaves a clear imprint of the environment on the characteristics of a dwarf galaxy. We find that the fraction of satellites dominated by old populations of stars matches observations well. However, the internal metallicity distributions of the model satellites appear to be narrower than observed. This may indicate limitations in our treatment of chemical enrichment, which is based on the instantaneous recycling approximation. Our model works best if the dark matter halo of the Milky Way has a mass of ~8 x 10^11 Msun, in agreement with the lower estimates from observations. The galaxy that resembles the Milky Way the most also has the best matching satellite luminosity function, although it does not contain an object as bright as the SMC or LMC. Compared to other semi-analytic models and abundance matching relations we find that central galaxies reside in less massive haloes, but the halo mass-stellar mass relation in our model is consistent both with hydrodynamical simulations and with recent observations.
The NIR Ca II triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf ga laxies and thereby an opportunity to constrain their chemical evolution processes. An interesting puzzle in this field is the significant lack of extremely metal-poor stars, below [Fe/H]=-3, found in classical dwarf galaxies around the Milky Way using this technique. The question arises whether these stars are really absent, or if the empirical Ca II triplet method used to study these systems is biased in the low-metallicity regime. Here we present results of synthetic spectral analysis of the Ca II triplet, that is focused on a better understanding of spectroscopic measurements of low-metallicity giant stars. Our results start to deviate strongly from the widely-used and linear empirical calibrations at [Fe/H]<-2. We provide a new calibration for Ca II triplet studies which is valid for -0.5<[Fe/H]<-4. We subsequently apply this new calibration to current data sets and suggest that the classical dwarf galaxies are not so devoid of extremely low-metallicity stars as was previously thought.
We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed g iants with accurate distance, radial velocity and metallicity information. We have developed a new clustering estimator: the 4distance measure, which when applied to our data set leads to the identification of 1 group and 7 pairs of clumped stars. The group, with 6 members, can confidently be matched to tidal debris of the Sagittarius dwarf galaxy. Two pairs match the properties of known Virgo structures. Using models of the disruption of Sagittarius in Galactic potentials with different degrees of dark halo flattening, we show that this favors a spherical or prolate halo shape, as demonstrated by Newberg et al. (2007) using SDSS data. One additional pair can be linked to older Sagittarius debris. We find that 20% of the stars in the Spaghetti data set are in substructures. From comparison with random data sets we derive a very conservative lower limit of 10% to the amount of substructure in the halo. However, comparison to numerical simulations shows that our results are also consistent with a halo entirely built up from disrupted satellites, provided the dominating features are relatively broad due to early merging or relatively heavy progenitor satellites.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا