ترغب بنشر مسار تعليمي؟ اضغط هنا

We are currently conducting a comprehensive and consistent re-processing of archival HST-NICMOS coronagraphic surveys using advanced PSF subtraction methods, entitled the Archival Legacy Investigations of Circumstellar Environments program (ALICE, HS T/AR 12652). This virtual campaign of about 400 targets has already produced numerous new detections of previously unidentified point sources and circumstellar structures. We present five newly spatially resolved debris disks revealed in scattered light by our analysis of the archival data. These images provide new views of material around young solar-type stars at ages corresponding to the period of terrestrial planet formation in our solar system. We have also detected several new candidate substellar companions, for which there are ongoing followup campaigns (HST/WFC3 and VLT/SINFONI in ADI mode). Since the methods developed as part of ALICE are directly applicable to future missions (JWST, AFTA coronagraph) we emphasize the importance of devising optimal PSF subtraction methods for upcoming coronagraphic imaging missions. We describe efforts in defining direct imaging high-level science products (HLSP) standards that can be applicable to other coronagraphic campaigns, including ground-based (e.g., Gemini Planet Imager), and future space instruments (e.g., JWST). ALICE will deliver a first release of HLSPs to the community through the MAST archive at STScI in 2014.
The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is comple mentary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWSTs three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWSTs five- to ten-year mission.
The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to reproduce the main aspects of wavefront sensing and control (WFSC) for JWST. To replicate the key optical physics of JWSTs three-mirror anast igmat (TMA) design at optical wavelengths we have developed a three-lens anastigmat optical system. This design uses custom lenses (plano-convex, plano-concave, and bi-convex) with fourth-order aspheric terms on powered surfaces to deliver the equivalent image quality and sampling of JWST NIRCam at the WFSC wavelength (633~nm, versus JWSTs 2.12~micron). For active control, in addition to the segmented primary mirror simulator, JOST reproduces the secondary mirror alignment modes with five degrees of freedom. We present the testbed requirements and its optical and optomechanical design. We study the linearity of the main aberration modes (focus, astigmatism, coma) both as a function of field point and level of misalignments of the secondary mirror. We find that the linearity with the transmissive design is similar to what is observed with a traditional TMA design, and will allow us to develop a linear-control alignment strategy based on the multi-field methods planned for JWST.
To enable optical long baseline interferometry toward faint objects, long integrations are necessary despite atmospheric turbulence. Fringe trackers are needed to stabilize the fringes and thus increase the fringe visibility and phase signal-to-noise ratio (SNR), with efficient controllers robust to instrumental vibrations, and to subsequent path fluctuations and flux drop-outs. We report on simulations, analysis and comparison of the performances of a classical integrator controller and of a Kalman controller, both optimized to track fringes under realistic observing conditions for different source magnitudes, disturbance conditions, and sampling frequencies. The key parameters of our simulations (instrument photometric performance, detection noise, turbulence and vibrations statistics) are based on typical observing conditions at the Very Large Telescope observatory and on the design of the GRAVITY instrument, a 4-telescope single-mode long baseline interferometer in the near-infrared, next in line to be installed at VLT Interferometer. We find that both controller performances follow a two-regime law with the star magnitude, a constant disturbance limited regime, and a diverging detector and photon noise limited regime. Moreover, we find that the Kalman controller is optimal in the high and medium SNR regime due to its predictive commands based on an accurate disturbance model. In the low SNR regime, the model is not accurate enough to be more robust than an integrator controller. Identifying the disturbances from high SNR measurements improves the Kalman performances in case of strong optical path difference disturbances.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا