ترغب بنشر مسار تعليمي؟ اضغط هنا

Many decades of observations of active galactic nuclei and X-ray binaries have shown that relativistic jets are ubiquitous when compact objects accrete. One could therefore anticipate the launch of a jet after a star is disrupted and accreted by a ma ssive black hole. This birth of a relativistic jet may have been observed recently in two stellar tidal disruption flares (TDFs), which were discovered in gamma-rays by Swift. Yet no transient radio emission has been detected from the tens of TDF candidates that were discovered at optical to soft X-ray frequencies. Because the sample that was followed-up at radio frequencies is small, the non-detections can be explained by Doppler boosting, which reduces the jet flux for off-axis observers. And since the existing follow-up observation are mostly within ~10 months of the discovery, the non-detections can also be due to a delay of the radio emission with respect to the time of disruption. To test the conjecture that all TDFs launch jets, we obtained 5 GHz follow-up observations with the Jansky VLA of seven known TDFs. To avoid missing delayed jet emission, our observations probe 1-8 years since the estimated time of disruption. None of the sources are detected, with very deep upper limits at the 10 micro Jansky level. These observations rule out the hypothesis that these TDFs launched jets similar to radio-loud quasars. We also constrain the possibility that the flares hosted a jet identical to Sw 1644+57, the first and best-sampled relativistic TDF. We thus obtain evidence for a dichotomy in the stellar tidal disruption population, implying that the jet launching mechanism is sensitive to the parameters of the disruption.
A star that passes too close to a massive black hole will be torn apart by tidal forces. The flare of photons emitted during the accretion of the stellar debris is predicted to be observable and candidates of such events have been observed at optical to X-ray frequencies. If a fraction of the accreted material is fed into a jet, tidal flares should be detectable at radio frequencies too, thus comprising a new class of rare radio transients. Using the well-established scaling between accretion power and jet luminosity and basic synchrotron theory, we construct an empirically-rooted model to predict the jet luminosity for a time-dependent accretion rate. We apply this model to stellar tidal disruptions and predict the snapshot rate of these events. For a small angle between the observer and the jet, our model reproduces the observed radio flux of the tidal flare candidate GRB 110328A. We find that future radio surveys will be able to test whether the majority of tidal disruptions are accompanied by a jet.
88 - Robert Dunn 2008
We present preliminary results on a global study of X-ray binaries using 14 Ms of data from the Rossi X-ray Timing Explorer satellite. Our initial study on GX 339-4 is recapped as an introduction to the methods used. We use a consistent analysis sche me for all objects, with three different spectral models to fit the powerlaw and disc components. We also take into account the possibility of a line being present in the data. The resulting almost 4000 observations allow the tracking of the spectral properties of the binaries as they evolve through an outburst. Our investigations concentrate on the disc and line properties of the binaries when in outburst. We also show the Disc-Fraction Luminosity diagram for the population of X-ray binaries studied which will enable us to further links with AGN.
37 - Elmar Koerding 2008
Astrophysical jets seem to occur in nearly all types of accreting objects: from supermassive black holes to young stellar objects. Based on X-ray binaries, a unified scenario describing the disc/jet coupling has evolved and extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behaviour as X-ray binaries but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in X-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.
In this paper we discuss the recent advances in the quantitative comparison of accretion, and the accretion:jet coupling, in accreting black holes in both X-ray binaries (where M ~ 10Msun) and Active Galactic Nuclei (10^5Msun < M < 10^9Msun). These s imilarities include the radiative efficiency and jet power as a function of accretion rate, which are themselves probably the origin of the `fundamental plane of black hole activity. A second `fundamental plane which connects mass, accretion rate and timing properties provides us with a further physical diagnostic. Patterns of radio loudness (i.e. jet production) as a function of luminosity and accretion state are shown to be similar for X-ray binaries and AGN. Finally we discuss how neutron stars are a useful control sample, and what the future may hold for this field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا