ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic u ncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis
89 - Elise Jennings 2012
We use large volume N-body simulations to predict the clustering of dark matter in redshift space in f(R) modified gravity cosmologies. This is the first time that the nonlinear matter and velocity fields have been resolved to such a high level of ac curacy over a broad range of scales in this class of models. We find significant deviations from the clustering signal in standard gravity, with an enhanced boost in power on large scales and stronger damping on small scales in the f(R) models compared to GR at redshifts z<1. We measure the velocity divergence (P_theta theta) and matter (P_delta delta) power spectra and find a large deviation in the ratios sqrt{P_theta theta/P_delta delta} and P_delta theta/P_deltadelta, between the f(R) models and GR for 0.03<k/(h/Mpc)<0.5. In linear theory these ratios equal the growth rate of structure on large scales. Our results show that the simulated ratios agree with the growth rate for each cosmology (which is scale dependent in the case of modified gravity) only for extremely large scales, k<0.06h/Mpc at z=0. The velocity power spectrum is substantially different in the f(R) models compared to GR, suggesting that this observable is a sensitive probe of modified gravity. We demonstrate how to extract the matter and velocity power spectra from the 2D redshift space power spectrum, P(k,mu), and can recover the nonlinear matter power spectrum to within a few percent for k<0.1h/Mpc. However, the model fails to describe the shape of the 2D power spectrum demonstrating that an improved model is necessary in order to reconstruct the velocity power spectrum accurately. The same model can match the monopole moment to within 3% for GR and 10% for the f(R) cosmology at k<0.2 h/Mpc at z=1. Our results suggest that the extraction of the velocity power spectrum from future galaxy surveys is a promising method to constrain deviations from GR.
115 - Elise Jennings 2011
The distribution of angles subtended between pairs of galaxies and the line of sight,which is uniform in real space, is distorted by their peculiar motions, and has been proposed as a probe of cosmic expansion. We test this idea using N-body simulati ons of structure formation in a cold dark matter universe with a cosmological constant and in two variant cosmologies with different dark energy models. We find that the distortion of the distribution of angles is sensitive to the nature of dark energy. However, for the first time, our simulations also reveal dependences of the normalization of the distribution on both redshift and cosmology that have been neglected in previous work. This introduces systematics that severely limit the usefulness of the original method. Guided by our simulations, we devise a new, improved test of the nature of dark energy. We demonstrate that this test does not require prior knowledge of the background cosmology and that it can even distinguish between models that have the same baryonic acoustic oscillations and dark matter halo mass functions. Our technique could be applied to the completed BOSS galaxy redshift survey to constrain the expansion history of the Universe to better than 2%. The method will also produce different signals for dark energy and modified gravity cosmologies even when they have identical expansion histories, through the different peculiar velocities induced in these cases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا