ترغب بنشر مسار تعليمي؟ اضغط هنا

A total dominator coloring of a graph G is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number of a graph is the minimum number of color classes in a total dom inator coloring. In this article, we study the total dominator coloring on middle graphs by giving several bounds for the case of general graphs and trees. Moreover, we calculate explicitely the total dominator chromatic number of the middle graph of several known families of graphs.
In this paper, we study the domination number of middle graphs. Indeed, we obtain tight bounds for this number in terms of the order of the graph. We also compute the domination number of some families of graphs such as star graphs, double start grap hs, path graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs and friendship graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the domination number of middle graphs.
In this article, we study the $k$-Lefschetz properties for non-Artinian algebras, proving that several known results in the Artinian case can be generalized in this setting. Moreover, we describe how to characterize the graded algebras having the $k$ -Lefschetz properties using sectional matrices. We then apply the obtained results to the study of the Jacobian algebra of hyperplane arrangements, with particular attention to the class of free arrangements.
In combinatorics, a latin square is a $ntimes n$ matrix filled with n different symbols, each occurring exactly once in each row and exactly once in each column. Associated to each latin square, we can define a simple graph called a latin square grap h. In this article, we compute lower and upper bounds for the domination number and the k-tuple total domination numbers of such graphs. Moreover, we describe a formula for the 2-tuple total domination number.
In this article, we study the weak and strong Lefschetz properties, and the related notion of almost revlex ideal, in the non-Artinian case, proving that several results known in the Artinian case hold also in this more general setting. We then apply the obtained results to the study of the Jacobian algebra of hyperplane arrangements.
We study the classes of free and plus-one generated hyperplane arrangements. Specifically, we describe how to compute the associated prime ideals of the Jacobian ideal of such an arrangement from its lattice of intersection. Moreover, we prove that t he localization of a plus-one generated arrangement is free or plus-one generated.
We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong $sigma$-Grobner b ases. Moreover, we prove that the Teraos conjecture over finite fields implies the conjecture over the rationals.
A $k$-tuple total dominating set ($k$TDS) of a graph $G$ is a set $S$ of vertices in which every vertex in $G$ is adjacent to at least $k$ vertices in $S$. The minimum size of a $k$TDS is called the $k$-tuple total dominating number and it is denoted by $gamma_{times k,t}(G)$. We give a constructive proof of a general formula for $gamma_{times 3, t}(K_n Box K_m)$.
We introduce the package textbf{arrangements} for the software CoCoA. This package provides a data structure and the necessary methods for working with hyperplane arrangements. In particular, the package implements methods to enumerate many commonly studied classes of arrangements, perform operations on them, and calculate various invariants associated to them.
In this paper, we study the class of free hyperplane arrangements. Specifically, we investigate the relations between freeness over a field of finite characteristic and freeness over $mathbb{Q}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا