ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum coherence is highly involved in photochemical functioning of complex molecular systems. Co-existence and intermixing of electronic and/or vibrational coherences, while never unambiguously identified experimentally, has been proposed to be res ponsible for this phenomenon. Analysis of multidimensional spectra of a synthetic belt-shaped molecular six-porphyrin nanoring with an inner template clearly shows a great diversity of separable electronic, vibrational and mixed coherences and their cooperation shaping the optical response. The results yield clear assignment of electronic and vibronic states, estimation of excitation transfer rates, and decoherence times. Theoretical considerations prove that the complexity of excitation dynamics and spectral features of the nanoring excitation spectrum is due to combined effect of cyclic symmetry, small geometrical deformations, and vibronic coupling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا