ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the direct observation of switching of the Neel vector of antiferromagnetic (AFM) domains in response to electrical pulses in micron-scale Pt/$alpha$-Fe$_2$O$_3$ Hall bars using photoemission electron microscopy. Current pulses lead to reve rsible and repeatable switching, with the current direction determining the final state, consistent with Hall effect experiments that probe only the spatially averaged response. Current pulses also produce irreversible changes in domain structure, in and even outside the current path. In both cases only a fraction of the domains switch in response to pulses. Further, analysis of images taken with different x-ray polarizations shows that the AFM Neel order has an out-of-plane component in equilibrium that is important to consider in analyzing the switching data. These results show that -in addition to effects associated with spin-orbit torques from the Pt layer, which can produce reversible switching-changes in AFM order can be induced by purely thermal effects.
We present a study of the transport properties of thermally generated spin currents in an insulating ferrimagnetic-antiferromagnetic-ferrimagnetic trilayer over a wide range of temperature. Spin currents generated by the spin Seebeck effect (SSE) in a yttrium iron garnet (YIG) YIG/NiO/YIG trilayer on a gadolinium gallium garnet (GGG) substrate were detected using the inverse spin Hall effect in Pt. By studying samples with different NiO thicknesses, the NiO spin diffusion length was determined to be 4.2 nm at room temperature. Interestingly, below 30 K, the inverse spin Hall signals are associated with the GGG substrate. The field dependence of the signal follows a Brillouin function for a S=7/2 spin ($mathrm{Gd^{3+}}$) at low temperature. Sharp changes in the SSE signal at low fields are due to switching of the YIG magnetization. A broad peak in the SSE response was observed around 100 K, which we associate with an increase in the spin-diffusion length in YIG. These observations are important in understanding the generation and transport properties of spin currents through magnetic insulators and the role of a paramagnetic substrate in spin current generation.
We present measurements of the spin Seebeck effect (SSE) by a technique that combines alternating currents (AC) and direct currents (DC). The method is applied to a ferrimagnetic insulator/heavy metal bilayer, Y$_3$Fe$_5$O$_{12}$(YIG)/Pt. Typically, SSE measurements use an AC current to produce an alternating temperature gradient and measure the voltage generated by the inverse spin-Hall effect in the heavy metal at twice the AC frequency. Here we show that when Joule heating is associated with AC and DC bias currents, the SSE response occurs at the frequency of the AC current drive and can be larger than the second harmonic SSE response. We compare the first and second harmonic responses and show that they are consistent with the SSE. The field dependence of the voltage response is used to characterize the damping-like and field-like torques. This method can be used to explore nonlinear thermoelectric effects and spin dynamics induced by temperature gradients.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا