ترغب بنشر مسار تعليمي؟ اضغط هنا

128 - Anne Dutrey 2014
Protoplanetary disks composed of dust and gas are ubiquitous around young stars and are commonly recognized as nurseries of planetary systems. Their lifetime, appearance, and structure are determined by an interplay between stellar radiation, gravity , thermal pressure, magnetic field, gas viscosity, turbulence, and rotation. Molecules and dust serve as major heating and cooling agents in disks. Dust grains dominate the disk opacities, reprocess most of the stellar radiation, and shield molecules from ionizing UV/X-ray photons. Disks also dynamically evolve by building up planetary systems which drastically change their gas and dust density structures. Over the past decade significant progress has been achieved in our understanding of disk chemical composition thanks to the upgrade or advent of new millimeter/Infrared facilities (SMA, PdBI, CARMA, Herschel, e-VLA, ALMA). Some major breakthroughs in our comprehension of the disk physics and chemistry have been done since PPV. This review will present and discuss the impact of such improvements on our understanding of the disk physical structure and chemical composition.
The overall properties of disks surrounding intermediate PMS stars (HAe) are not yet well constrained by current observations. The disk inclination, which significantly affect SED modeling, is often unknown. We attempted to resolve the disks around C Q Tau and MWC 758, to provide accurate constraints on the disk parameters, in particular the temperature and surface density distribution. We report arcsecond resolution observations of dust and CO line emissions with the IRAM array. The disk properties are derived using a standard disk model. We use the Meudon PDR code to study the chemistry. The two disks share some common properties. The mean CO abundance is low despite disk temperatures above the CO condensation temperature. Furthermore, the CO surface density and dust opacity have different radial dependence. The CQ Tau disk appears warmer, and perhaps less dense than that of MWC 758. Modeling the chemistry, we find that photodissociation of CO is a viable mechanism to explain the low abundance. The photospheric flux is not sufficient for this: a strong UV excess is required. In CQ Tau, the high temperature is consistent with expectation for a PDR. The PDR model has difficulty explaining the mild temperatures obtained in MWC 758, for which a low gas-to-dust ratio is preferred. A yet unexplored alternative could be that, despite currently high gas temperatures, CO remains trapped in grains, as the models suggest that large grains can be cold enough to prevent thermal desorption of CO. The low inclination of the CQ Tau disk, ~30^circ, challenges previous interpretations given for the UX Ori - like luminosity variations of this star. We conclude that CO cannot be used as a simple tracer of gas-to-dust ratio, the CO abundance being affected by photodissociation, and grain growth.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا