ترغب بنشر مسار تعليمي؟ اضغط هنا

We measure the mass functions for generically red and blue galaxies, using a z < 0.12 sample of log M* > 8.7 field galaxies from the Galaxy And Mass Assembly (GAMA) survey. Our motivation is that, as we show, the dominant uncertainty in existing meas urements stems from how red and blue galaxies have been selected/defined. Accordingly, we model our data as two naturally overlapping populations, each with their own mass function and colour-mass relation, which enables us characterise the two populations without having to specify a priori which galaxies are red and blue. Our results then provide the means to derive objective operational definitions for the terms red and blue, which are based on the phenomenology of the colour-mass diagrams. Informed by this descriptive modelling, we show that: 1.) after accounting for dust, the stellar colours of blue galaxies do not depend strongly on mass; 2.) the tight, flat dead sequence does not extend much below log M* ~ 10.5; instead, 3.) the stellar colours of red galaxies vary rather strongly with mass, such that lower mass red galaxies have bluer stellar populations; 4.) below log M* ~ 9.3, the red population dissolves into obscurity, and it becomes problematic to talk about two distinct populations; as a consequence, 5.) it is hard to meaningfully constrain the shape, including the possibility of an upturn, of the red galaxy mass function below log M* ~ 9. Points 1-4 provide meaningful targets for models of galaxy formation and evolution to aim for.
Using data from the Sloan Digital Sky Survey (SDSS; data release 7), we have conducted a search for local analogs to the extremely compact, massive, quiescent galaxies that have been identified at z > 2. We show that incompleteness is a concern for s uch compact galaxies, particularly for low redshifts (z < ~0.05) as a result of the SDSS spectroscopic target selection algorithm. We have identified 63 massive red sequence galaxies at 0.066 < z < 0.12 that are smaller than the median size-mass relation by a factor of 2 or more. Consistent with expectations from the virial theorem, the median offset from the mass-velocity dispersion relation for these galaxies is 0.12 dex. We do not find any galaxies with sizes and masses comparable to those observed at z ~ 2, implying a decrease in the comoving number density (at fixed size and mass) by a factor of > 5000. This result cannot be explained by incompleteness: at 0.066 < z <0.12, the SDSS spectroscopic sample should typically be ~75% complete for galaxies with the sizes and masses seen at high redshift, although for the very smallest galaxies it may be as low as ~20%. To confirm that the absence of such compact massive galaxies in SDSS is not a spectroscopic selection effect, we have also looked for such galaxies in the SDSS photometric catalog, using photometric redshifts. While we do find signs of a bias against massive, compact galaxies, this analysis suggests that the SDSS spectroscopic sample is missing at most a few objects in the regime we consider. Accepting the high redshift results, it is clear that massive galaxies must undergo significant structural evolution over z<2 in order to match the population seen in the local universe. Our results suggest that a highly stochastic mechanism like major mergers cannot be the primary driver of this strong size evolution.
We present a new K-selected, optical-to-near-infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community. The dataset is founded on publicly available imaging, supplemented by original zJK imaging data obtained as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from nine band U-K imaging covering the full 0.5x0.5 sq. deg. of the ECDFS, plus H band data for approximately 80% of the field. The 5sigma flux limit for point-sources is K = 22.0 (AB). This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75 < K < 22.00 is 85+%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and restframe photometry derived from the ten band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1sigma) photometric redshift accuracy of Dz/(1+z) = 0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating restframe photometry from observed SEDs, dubbed InterRest. Particularly in concert with the wealth of already publicly available data in the ECDFS, this new MUSYC catalog provides an excellent resource for studying the changing properties of the massive galaxy population at z < 2. (Abridged)
We present the color-magnitude and color-stellar mass diagrams for galaxies with z_phot < ~2, based on a K < 22 (AB) catalog of the Extended Chandra Deep Field South (ECDFS) from the MUltiwavelength Survey by Yale-Chile (MUSYC). Our main sample of 78 40 galaxies contains 1297 M_* > 10^11 M_Sol galaxies in the range 0.2 < z_phot < 1.8. We show empirically that this catalog is approximately complete for M_* > 10^11 M_Sol galaxies for z_phot < 1.8. For this mass-limited sample, we show that the locus of the red sequence color-stellar mass relation evolves as Del(u-r) ~ (-0.44+/-0.02) z_phot for z_phot < ~1.2. For z_phot > ~1.3, however, we are no longer able to reliably distinguish red and blue subpopulations from the observed color distribution; we show that this would require much deeper near infrared data. At 1.5 < z_phot <1.8, the comoving number density of M_* > 10^11 M_Sol galaxies is ~50% of the local value, with a red fraction of ~33%. Making a parametric fit to the observed evolution, we find n_tot(z) ~ (1+z_phot)^(-0.52+/-0.12(+/-0.20)). We find stronger evolution in the red fraction: f_red(z) ~ (1+z_phot)^(-1.17+/-0.18(+/-0.21)). Through a series of sensitivity analyses, we show that the most important sources of systematic error are: 1. systematic differences in the analysis of the z~0 and z>>0 samples; 2. systematic effects associated with details of the photometric redshift calculation; and 3. uncertainties in the photometric calibration. With this in mind, we show that our results based on photometric redshifts are consistent with a completely independent analysis which does not require redshift information for individual galaxies. Our results suggest that, at most, 1/5 of local red sequence galaxies with M_* >10^11 M_Sol were already in place at z ~ 2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا