ترغب بنشر مسار تعليمي؟ اضغط هنا

We constrain the evolution of the rest-frame far-infrared (FIR) luminosity function out to high redshift, by combining several pieces of complementary information provided by the deep Balloon-borne Large-Aperture Submillimeter Telescope surveys at 25 0, 350 and 500 micron, as well as other FIR and millimetre data. Unlike most other phenomenological models, we characterise the uncertainties in our fitted parameters using Monte Carlo Markov Chains. We use a bivariate local luminosity function that depends only on FIR luminosity and 60-to-100 micron colour, along with a single library of galaxy spectral energy distributions indexed by colour, and apply simple luminosity and density evolution. We use the surface density of sources, Cosmic Infrared Background (CIB) measurements and redshift distributions of bright sources, for which identifications have been made, to constrain this model. The precise evolution of the FIR luminosity function across this crucial range has eluded studies at longer wavelengths (e.g., using SCUBA and MAMBO) and at shorter wavelengths (e.g., Spitzer), and should provide a key piece of information required for the study of galaxy evolution. Our adoption of Monte Carlo methods enables us not only to find the best-fit evolution model, but also to explore correlations between the fitted parameters. Our model-fitting approach allows us to focus on sources of tension coming from the combination of data-sets. We specifically find that our choice of parameterisation has difficulty fitting the combination of CIB measurements and redshift distribution of sources near 1 mm. Existing and future data sets will be able to dramatically improve the fits, as well as break strong degeneracies among the models. [abridged]
We present a study of the cosmic infrared background, which is a measure of the dust obscured activity in all galaxies in the Universe. We venture to isolate the galaxies responsible for the background at 1mm; with spectroscopic and photometric redsh ifts we constrain the redshift distribution of these galaxies. We create a deep 1.16mm map (sigma ~ 0.5mJy) by combining the AzTEC 1.1mm and MAMBO 1.2mm datasets in GOODS-N. This combined map contains 41 secure detections, 13 of which are new. By averaging the 1.16mm flux densities of individually undetected galaxies with 24um flux densities > 25uJy, we resolve 31--45 per cent of the 1.16mm background. Repeating our analysis on the SCUBA 850um map, we resolve a higher percentage (40--64 per cent) of the 850um background. A majority of the background resolved (attributed to individual galaxies) at both wavelengths comes from galaxies at z > 1.3. If the ratio of the resolved submillimeter to millimeter background is applied to a reasonable scenario for the origins of the unresolved submillimeter background, 60--88 per cent of the total 1.16mm background comes from galaxies at z > 1.3.
We carry out a multi-wavelength study of individual galaxies detected by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and identified at other wavelengths, using data spanning the radio to the ultraviolet (UV). We develop a Monte C arlo method to account for flux boosting, source blending, and correlations among bands, which we use to derive deboosted far-infrared (FIR) luminosities for our sample. We estimate total star-formation rates for BLAST counterparts with z < 0.9 by combining their FIR and UV luminosities. Star formation is heavily obscured at L_FIR > 10^11 L_sun, z > 0.5, but the contribution from unobscured starlight cannot be neglected at L_FIR < 10^11 L_sun, z < 0.25. We assess that about 20% of the galaxies in our sample show indication of a type-1 active galactic nucleus (AGN), but their submillimeter emission is mainly due to star formation in the host galaxy. We compute stellar masses for a subset of 92 BLAST counterparts; these are relatively massive objects, with a median mass of ~10^11 M_sun, which seem to link the 24um and SCUBA populations, in terms of both stellar mass and star-formation activity. The bulk of the BLAST counterparts at z<1 appear to be run-of-the-mill star-forming galaxies, typically spiral in shape, with intermediate stellar masses and practically constant specific star-formation rates. On the other hand, the high-z tail of the BLAST counterparts significantly overlaps with the SCUBA population, in terms of both star-formation rates and stellar masses, with observed trends of specific star-formation rate that support strong evolution and downsizing.
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed ~8.7 deg^2 centered on GOODS-South at 250, 350, and 500 microns. In Dye et al. (2009) we presented the catalogue of sources detected at 5-sigma in at least one ban d in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 82 of these counterparts. The spectra show that the BLAST counterparts are mostly star-forming galaxies but not extreme ones when compared to those found in the Sloan Digital Sky Survey. Roughly one quarter of the BLAST counterparts contain an active nucleus. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies, showing that the standard methods work well even when a galaxy contains a large amount of dust. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST bands. We find strong evolution out to z=1, in the sense that there is a large increase in the space-density of the most luminous galaxies. We have also investigated the evolution of the dust-mass function, finding similar strong evolution in the space-density of the galaxies with the largest dust masses, showing that the luminosity evolution seen in many wavebands is associated with an increase in the reservoir of interstellar matter in galaxies.
We measure the local galaxy far-infrared (FIR) 60-to-100 um colour-luminosity distribution using an all-sky IRAS survey. This distribution is an important reference for the next generation of FIR--submillimetre surveys that have and will conduct deep extra-galactic surveys at 250--500 um. With the peak in dust-obscured star-forming activity leading to present-day giant ellipticals now believed to occur in sub-mm galaxies near z~2.5, these new FIR--submillimetre surveys will directly sample the SEDs of these distant objects at rest-frame FIR wavelengths similar to those at which local galaxies were observed by IRAS. We have taken care to correct for temperature bias and evolution effects in our IRAS 60 um-selected sample. We verify that our colour-luminosity distribution is consistent with measurements of the local FIR luminosity function, before applying it to the higher-redshift Universe. We compare our colour-luminosity correlation with recent dust-temperature measurements of sub-mm galaxies and find evidence for pure luminosity evolution of the form (1+z)^3. This distribution will be useful for the development of evolutionary models for BLAST and SPIRE surveys as it provides a statistical distribution of rest-frame dust temperatures for galaxies as a function of luminosity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا