ترغب بنشر مسار تعليمي؟ اضغط هنا

104 - Cecile Gry 2014
Aims: We offer a new, simpler picture of the local interstellar medium, made of a single continuous cloud enveloping the Sun. This new outlook enables the description of a diffuse cloud from within and brings to light some unexpected properties. Meth ods: We re-examine the kinematics and abundances of the local interstellar gas, as revealed by the published results for the ultraviolet absorption lines of MgII, FeII, and HI. Results: In contrast to previous representations, our new picture of the local interstellar medium consists of a single, monolithic cloud that surrounds the Sun in all directions and accounts for most of the matter present in the first 50 parsecs around the Sun. The cloud fills the space around us out to about 9 pc in most directions, although its boundary is very irregular with possibly a few extensions up to 20 pc. The cloud does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like a squashed balloon. Average HI volume densities inside the cloud vary between 0.03 and 0.1 cm-3 over different directions. Metals appear to be significantly depleted onto grains, and there is a steady increase in depletion from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Secondary absorption components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume occupied by the main cloud. Half of the sight lines exhibit a secondary component moving at about -7.2 km/s with respect to the main component, which may be the signature of a shock propagating toward the clouds interior.
190 - Robert Williams 2008
Emission-line abundances have been uncertain for more than a decade due to unexplained discrepancies in the relative intensities of the forbidden lines and weak permitted recombination lines in planetary nebulae (PNe) and H II regions. The observed i ntensities of forbidden and recombination lines originating from the same parent ion differ from their theoretical values by factors of more than an order of magnitude in some of these nebulae. In this study we observe UV resonance line absorption in the central stars of PNe produced by the nebular gas, and from the same ions that emit optical forbidden lines. We then compare the derived absorption column densities with the emission measures determined from ground-based observations of the nebular forbidden lines. We find for our sample of PNe that the collisionally excited forbidden lines yield column densities that are in basic agreement with the column densities derived for the same ions from the UV absorption lines. A similar comparison involving recombination line column densities produces poorer agreement, although near the limits of the formal uncertainties of the analyses. An additional sample of objects with larger abundance discrepancy factors will need to be studied before a stronger statement can be made that recombination line abundances are not correct.
This is the second of two papers reporting observations and analysis of the unusually bright (m_b=14.4), luminous (M_B=-25.5), nearby (z=0.192) narrow-line quasar PHL 1811. The first paper reported that PHL 1811 is intrinsically X-ray weak, and prese nted a spectral energy distribution (SED). Here we present HST STIS optical and UV spectra, and ground-based optical spectra. The optical and UV line emission is very unusual. There is no evidence for forbidden or semiforbidden lines. The near-UV spectrum is dominated by very strong FeII and FeIII, and unusual low-ionization lines such as NaID and CaII H&K are observed. High-ionization lines are very weak; CIV has an equivalent width of 6.6A, a factor of ~5 smaller than measured from quasar composite spectra. An unusual feature near 1200A can be deblended in terms of Lyalpha, NV, SiII, and CIII* using the blueshifted CIV profile as a template. Photoionization modeling shows that the unusual line emission can be explained qualitatively by the unusually soft SED. Principally, a low gas temperature results in inefficient emission of collisionally excited lines, including the semiforbidden lines generally used as density diagnostics. The emission resembles that of high-density gas; in both cases this is a consequence of inefficient cooling. PHL 1811 is very unusual, but we note that quasar surveys are generally biased against finding similar objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا