ترغب بنشر مسار تعليمي؟ اضغط هنا

We present scanning tunneling microscopy and spectroscopy experiments on the novel J_eff = 1/2 Mott insulator Sr2IrO4. Local density of states (LDOS) measurements show an intrinsic insulating gap of 620 meV that is asymmetric about the Fermi level an d is larger than previously reported values. The size of this gap suggests that Sr2IrO4 is likely a Mott rather than Slater insulator. In addition, we found a small number of native defects which create in-gap spectral weight. Atomically resolved LDOS measurements on and off the defects shows that this energy gap is quite fragile. Together the extended nature of the 5d electrons and poor screening of defects help explain the elusive nature of this gap.
In the quasi-2D electron systems of the layered transition metal dichalcogenides (TMD) there is still a controversy about the nature of the transitions to charge-density wave (CDW) phases, i.e. whether they are described by a Peierls-type mechanism o r by a lattice-driven model. By performing scanning tunneling microscopy (STM) experiments on the canonical TMD-CDW systems, we have imaged the electronic modulation and the lattice distortion separately in 2H-TaS$_2$, TaSe$_2$, and NbSe$_2$. Across the three materials, we found dominant lattice contributions instead of the electronic modulation expected from Peierls transitions, in contrast to the CDW states that show the hallmark of contrast inversion between filled and empty states. Our results imply that the periodic lattice distortion (PLD) plays a vital role in the formation of CDW phases in the TMDs and illustrate the importance of taking into account the more complicated lattice degree of freedom when studying correlated electron systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا