ترغب بنشر مسار تعليمي؟ اضغط هنا

111 - Vinicius M. Netto 2020
Cities are different around the world, but does this fact have any relation to culture? The idea that urban form embodies idiosyncrasies related to cultural identities captures the imagination of many in urban studies, but it is an assumption yet to be carefully examined. Approaching spatial configurations in the built environment as a proxy of urban culture, this paper searches for differences potentially consistent with specific regional cultures or cultures of planning in urban development. It does so focusing on the elementary components shaping cities: buildings and how they are aggregated in cellular complexes of built form. Exploring Shannons work, we introduce an entropy measure to analyse the probability distribution of cellular arrangements in built form systems. We apply it to downtown areas of 45 cities from different regions of the world as a similarity measure to compare and cluster cities potentially consistent with specific spatial cultures. Findings suggest a classification scheme that sheds further light on what we call the cultural hypothesis: the possibility that different cultures and regions find different ways of ordering space.
Microbiological systems evolve to fulfill their tasks with maximal efficiency. The immune system is a remarkable example, where self-non self distinction is accomplished by means of molecular interaction between self proteins and antigens, triggering affinity-dependent systemic actions. Specificity of this binding and the infinitude of potential antigenic patterns call for novel mechanisms to generate antibody diversity. Inspired by this problem, we develop a genetic algorithm where agents evolve their strings in the presence of random antigenic strings and reproduce with affinity-dependent rates. We ask what is the best strategy to generate diversity if agents can rearrange their strings a finite number of times. We find that endowing each agent with an inheritable cellular automaton rule for performing rearrangements makes the system more efficient in pattern-matching than if transformations are totally random. In the former implementation, the population evolves to a stationary state where agents with different automata rules coexist.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا