ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we obtain and study typical beam entropy values for millimetre wave (mm-wave) channel models using the NYUSIM simulator for frequencies up to 100 GHz for fifth generation (5G) and beyond 5G cellular communication systems. The beam entr opy is used to quantify sparse MIMO channel randomness in beamspace. Lower relative beam entropy channels are suitable for memory-assisted statistically-ranked (MarS) and hybrid radio frequency (RF) beam training algorithms. High beam entropies can potentially be advantageous for low overhead secured radio communications by generating cryptographic keys based on channel randomness in beamspace, especially for sparse multiple input multiple output (MIMO) channels. Urban micro (UMi), urban macro (UMa) and rural macro (RMa) cellular scenarios have been investigated in this work for 28, 60, 73 and 100 GHz.
Terahertz spectrum is being researched upon to provide ultra-high throughput radio links for indoor applications, e.g., virtual reality (VR), etc. as well as outdoor applications, e.g., backhaul links, etc. This paper investigates a monopulse-based b eam tracking approach for limited mobility users relying on sparse massive multiple input multiple output (MIMO) wireless channels. Owing to the sparsity, beamforming is realized using digitally-controlled radio frequency (RF) / intermediate-frequency (IF) phase shifters with constant amplitude constraint for transmit power compliance. A monopulse-based beam tracking technique, using received signal strength indi-cation (RSSI) is adopted to avoid feedback overheads for obvious reasons of efficacy and resource savings. The Matlab implementation of the beam tracking algorithm is also reported. This Matlab implementation has been kept as general purpose as possible using functions wherein the channel, beamforming codebooks, monopulse comparator, etc. can easily be updated for specific requirements and with minimum code amendments.
This paper presents a novel radio frequency (RF) beam training algorithm for sparse multiple input multiple output (MIMO) channels using unitary RF beamforming codebooks at transmitter (Tx) and receiver (Rx). The algorithm leverages statistical knowl edge from past beam data for expedited beam search with statistically-minimal training overheads. Beams are tested in the order of their ranks based on their probabilities for providing a communication link. For low beam entropy scenarios, statistically-ranked beam search performs excellent in reducing the average number of beam tests per Tx-Rx beam pair identification for a communication link. For high beam entropy cases, a hybrid algorithm involving both memory-assisted statistically-ranked (MarS) beam search and multi-level (ML) beam search is also proposed. Savings in training overheads increase with decrease in beam entropy and increase in MIMO channel dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا