ترغب بنشر مسار تعليمي؟ اضغط هنا

The spin-down of a neutron star, e.g. due to magneto-dipole losses, results in compression of the stellar matter and induces nuclear reactions at phase transitions between different nuclear species in the crust. We show that this mechanism is effecti ve in heating recycled pulsars, in which the previous accretion process has already been compressing the crust, so it is not in nuclear equilibrium. We calculate the corresponding emissivity and confront it with available observations, showing that it might account for the likely thermal ultraviolet emission of PSR J0437-4715.
We study the effects of finite stellar temperatures on the oscillations of superfluid neutron stars. The importance of these effects is illustrated with a simple example of a radially pulsating general relativistic star. Two main effects are taken in to account: (i) temperature dependence of the entrainment matrix and (ii) the variation of the size of superfluid region with temperature. Four models are considered, which include either one or both of these two effects. Pulsation spectra are calculated for these models, and asymptotes for eigenfrequencies at temperatures close to critical temperature of neutron superfluidity, are derived. It is demonstrated that models that allow for the temperature effect (ii) but disregard the effect (i), yield unrealistic results. Eigenfunctions for the normal- and superfluid-type pulsations are analyzed. It is shown that superfluid pulsation modes practically do not appear at the neutron-star surface and, therefore, can hardly be observed by measuring the modulation of the electromagnetic radiation from the star. The e-folding times for damping of pulsations due to the shear viscosity and nonequilibrium modified Urca processes are calculated and their asymptotes at temperatures close to the neutron critical temperature, are obtained. It is demonstrated that superfluid pulsation modes are damped by 1--3 orders of magnitude faster than normal modes.
We calculate the important quantity of superfluid hydrodynamics, the relativistic entrainment matrix for a nucleon-hyperon mixture at arbitrary temperature. In the nonrelativistic limit this matrix is also termed the Andreev-Bashkin or mass-density m atrix. Our results can be useful for modeling the pulsations of massive neutron stars with superfluid nucleon-hyperon cores and for studies of the kinetic properties of superfluid baryon matter.
We calculate the relativistic entrainment matrix Y_ik at zero temperature for nucleon-hyperon mixture composed of neutrons, protons, Lambda and Sigma^- hyperons, as well as of electrons and muons. This matrix is analogous to the entrainment matrix (a lso termed mass-density matrix or Andreev-Bashkin matrix) of non-relativistic theory. It is an important ingredient for modelling the pulsations of massive neutron stars with superfluid nucleon-hyperon cores. The calculation is done in the frame of the relativistic Landau Fermi-liquid theory generalized to the case of superfluid mixtures; the matrix Y_ik is expressed through the Landau parameters of nucleon-hyperon matter. The results are illustrated with a particular example of the sigma-omega-rho mean-field model with scalar self-interactions. Using this model we calculate the matrix Y_ik and the Landau parameters. We also analyze stability of the ground state of nucleon-hyperon matter with respect to small perturbations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا