ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating $g$-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin reson ance spectroscopy. In particular, we report on a minimum of the gap in the vicinity of the saturation field $H_{sat}=48.5$ T associated with a transition from the sine-Gordon region (with soliton-breather elementary excitations) to a spin-polarized state (with magnon excitations). This interpretation is fully confirmed by the quantitative agreement over the entire field range of the experimental data with the DMRG investigation of the spin-1/2 Heisenberg chain with a staggered transverse field.
Low-energy magnetic excitations in the spin-1/2 chain compound (C$_6$H$_9$N$_2$)CuCl$_3$ [known as (6MAP)CuCl$_3$] are probed by means of tunable-frequency electron spin resonance. Two modes with asymmetric (with respect to the $h u=gmu_B B$ line) fr equency-field dependences are resolved, illuminating the striking incompatibility with a simple uniform $S=frac{1}{2}$ Heisenberg chain model. The unusual ESR spectrum is explained in terms of the recently developed theory for spin-1/2 chains, suggesting the important role of next-nearest-neighbor interactions in this compound. Our conclusion is supported by model calculations for the magnetic susceptibility of (6MAP)CuCl$_3$, revealing a good qualitative agreement with experiment.
Magnetic excitations in the spin-ladder material (C$_5$H$_{12}$N)$_2$CuBr$_4$ [BPCB] are probed by high-resolution multi-frequency electron spin resonance (ESR) spectroscopy. Our experiments provide a direct evidence for a biaxial anisotropy ($sim 5% $ of the dominant exchange interaction), that is in contrast to a fully isotropic spin-ladder model employed for this system previously. It is argued that this anisotropy in BPCB is caused by spin-orbit coupling, which appears to be important for describing magnetic properties of this compound. The zero-field zone-center gap in the excitation spectrum of BPCB, $Delta_0/k_{B}=16.5$ K, is detected directly. Furthermore, an ESR signature of the inter-ladder exchange interactions is obtained. The detailed characterization of the anisotropy in BPCB completes the determination of the full spin hamiltonian of this exceptional spin-ladder material and shows ways to study anisotropy effects in spin ladders.
Specific heat and ac magnetic susceptibility measurements, spanning low temperatures ($T geq 40$ mK) and high magnetic fields ($B leq 14$ T), have been performed on a two-dimensional (2D) antiferromagnet Cu(tn)Cl$_{2}$ (tn = C$_{3}$H$_{10}$N$_{2}$). The compound represents an $S = 1/2$ spatially anisotropic triangular magnet realized by a square lattice with nearest-neighbor ($J/k_{B} = 3$ K), frustrating next-nearest-neighbor ($0 < J^{prime}/J < 0.6$), and interlayer ($|J^{prime prime}/J| approx 10^{-3}$) interactions. The absence of long-range magnetic order down to $T = $ 60 mK in $B = 0$ and the $T^{2}$ behavior of the specific heat for $T leq 0.4$ K and $B geq 0$ are considered evidence of high degree of 2D magnetic order. In fields lower than the saturation field, $B_{text{sat}} = 6.6$ T, a specific heat anomaly, appearing near 0.8 K, is ascribed to bound vortex-antivortex pairs stabilized by the applied magnetic field. The resulting magnetic phase diagram is remarkably consistent with the one predicted for the ideal square lattice, except that $B_{text{sat}}$ is shifted to values lower than expected. Potential explanations for this observation, as well as the possibility of a Berezinski-Kosterlitz-Thouless (BKT) phase transition in a spatially anisotropic triangular magnet with the N{e}el ground state, are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا