ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that oxygen vacancies at titanate interfaces induce a complex multiorbital reconstruction which involves a lowering of the local symmetry and an inversion of t2g and eg orbitals resulting in the occupation of the eg orbitals of Ti atoms neigh boring the O vacancy. The orbital reconstruction depends strongly on the clustering of O vacancies and can be accompanied by a magnetic splitting between the local eg orbitals with lobes directed towards the vacancy and interface dxy orbitals. The reconstruction generates a two-dimensional interface magnetic state not observed in bulk SrTiO3. Using generalized gradient approximation (LSDA) with intra-atomic Coulomb repulsion (GGA+U), we find that this magnetic state is common for titanate surfaces and interfaces.
First-principles density functional calculations demonstrate that a spin-polarized two-dimensional conducting state can be realized at the interface between two non-magnetic band insulators. The (001) surface of the diamagnetic insulator FeS2 (pyrite ) supports a localized surface state deriving from Fe d-orbitals near the conduction band minimum. The deposition of a few unit cells of the polar perovskite oxide LaAlO3 leads to electron transfer into these surface bands, thereby creating a conducting interface. The occupation of these narrow bands leads to an exchange splitting between the spin sub-bands, yielding a highly spin-polarized conducting state distinct from the rest of the non-magnetic, insulating bulk. Such an interface presents intriguing possibilities for spintronics applications.
Ferromagnetism and superconductivity are in most cases adverse. However, recent experiments reveal that they coexist at interfaces of LaAlO3 and SrTiO3. We analyze the magnetic state within density functional theory and provide evidence that magnetis m is not an intrinsic property of the two-dimensional electron liquid at the interface. We demonstrate that the robust ferromagnetic state is induced by the oxygen vacancies in SrTiO3- or in the LaAlO3-layer. This allows for the notion that areas with increased density of oxygen vacancies produce ferromagnetic puddles and account for the previous observation of a superparamagnetic behavior in the superconducting state.
A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between a ferroelectric barrier and magnetic La1-xSrxMnO3 electrode. Using first-principles densit y functional theory we demonstrate that a few magnetic monolayers of La1-xSrxMnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic scale spin-valve by filtering spin-dependent current. This effect produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا