ترغب بنشر مسار تعليمي؟ اضغط هنا

When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this melting transition have been intensively investigated. Recently t here has been a surge of interest in this question, caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce, and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte-Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behaviour and that the effect of confinement is stronger than in the ideal case.
The photon spectrum accompanying the orbital K-electron capture in the first forbidden unique decay of 81Kr was measured. The total radiation intensity for the photon energies larger than 50 keV was found to be 1.47(6) x 10^{-4} per K-capture. Both t he shape of the spectrum and its intensity relative to the ordinary, non-radiative capture rate, are compared to theoretical predictions. The best agreement is found for the recently developed model which employs the length gauge for the electromagnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا