ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on measurements of the local friction law at a multi-contact interface formed between a smooth rubber and statistically rough glass lenses, under steady state friction. Using contact imaging, surface displacements are measured, and inverted to extract both distributions of frictional shear stress and contact pressure with a spatial resolution of about 10~$mu$m. For a glass surface whose topography is self-affine with a Gaussian height asperity distribution, the local frictional shear stress is found to vary strongly sub-linearly with the local contact pressure over the whole investigated pressure range. Such sub-linear behavior is also evidenced for a surface with a non Gaussian height asperity distribution, demonstrating that, for such multi-contact interfaces, Amontons-Coulombs friction law does not prevail at the local scale.
We report on normal contact and friction measurements of model multicontact interfaces formed between smooth surfaces and substrates textured with a statistical distribution of spherical micro-asperities. Contacts are either formed between a rigid te xtured lens and a smooth rubber, or a flat textured rubber and a smooth rigid lens. Measurements of the real area of contact $A$ versus normal load $P$ are performed by imaging the light transmitted at the microcontacts. For both interfaces, $A(P)$ is found to be sub-linear with a power law behavior. Comparison to two multi-asperity contact models, which extend Greenwood-Williamson (J. Greenwood, J. Williamson, textit{Proc. Royal Soc. London Ser. A} textbf{295}, 300 (1966)) model by taking into account the elastic interaction between asperities at different length scales, is performed, and allows their validation for the first time. We find that long range elastic interactions arising from the curvature of the nominal surfaces are the main source of the non-linearity of $A(P)$. At a shorter range, and except for very low pressures, the pressure dependence of both density and area of micro-contacts remains well described by Greenwood-Williamsons model, which neglects any interaction between asperities. In addition, in steady sliding, friction measurements reveal that the mean shear stress at the scale of the asperities is systematically larger than that found for a macroscopic contact between a smooth lens and a rubber. This suggests that frictional stresses measured at macroscopic length scales may not be simply transposed to microscopic multicontact interfaces.
Dry solid friction is often accompanied by force modulations originating from stick-slip instabilities. Here a distinct, quasi-static mechanism is evidenced leading to quasi-periodic force oscillations during sliding contact between an elastomer bloc k, whose surface is patterned with parallel grooves, and finely abraded glass slides. The dominant oscillation frequency is set by the ratio between the sliding velocity and the period of the grooves. A mechanical model is proposed that provides a quantitative prediction for the amplitude of the force modulations as a function of the normal load, the period of the grooves and the roughness characteristics of the substrate. The models main ingredient is the non-linearity of the friction law. Since such non-linearity is ubiquitous for soft solids, this fingerprint effect should be relevant to a large class of frictional configurations and might in particular have important consequences in human (or humanoid) active digital touch.
We report experiments on the deformation and transport of an elastic fiber in a viscous cellular flow, namely a lattice of counter-rotative vortices. We show that the fiber can buckle when approaching a stagnation point. By tuning either the flow or fiber properties, we measure the onset of this buckling instability. The buckling threshold is determined by the relative intensity of viscous and elastic forces, the elasto-viscous number Sp. Moreover we show that flexible fibers escape faster from a vortex (formed by closed streamlines) compared to rigid fibers. As a consequence, the deformation of the fiber changes its transport properties in the cellular flow.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا