ترغب بنشر مسار تعليمي؟ اضغط هنا

We will present our study of the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between Sept. 2007 a nd Sept. 2012, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call waves. Statistically significant waves show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. The Sept. - Oct. 2007 gamma-ray enhancement episode detected by AGILE shows both wave and flaring behavior. We extend our analysis to the publicly available Fermi-LAT dataset and show that several additional wave episodes can be identified. We discuss the spectral properties of the September 2007 wave/flare event and show that the physical properties of the waves are intermediate between steady and flaring states. Plasma instabilities inducing waves appear to involve spatial distances $ l sim 10^{16} ,$cm and enhanced magnetic fields $B sim (0.5 - 1),$}mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the wave phenomenon ($E_w sim 10^{42} , rm erg$, where $E_w$ is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spindown energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.
Gamma-ray emission from the Crab Nebula has been recently shown to be unsteady. In this paper, we study the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main inten se and day-long flares detected by AGILE and Fermi-LAT between Sept. 2007 and Sept. 2012, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call waves. Statistically significant waves show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. We present a refined flux and spectral analysis of the Sept. - Oct. 2007 gamma-ray enhancement episode detected by AGILE that shows both wave and flaring behavior. We extend our analysis to the publicly available Fermi-LAT dataset and show that several additional wave episodes can be identified. We discuss the spectral properties of the September 2007 wave/flare event and show that the physical properties of the waves are intermediate between steady and flaring states. Plasma instabilities inducing waves appear to involve spatial distances l sim 10^{16} cm and enhanced magnetic fields B sim (0.5 - 1) mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the wave phenomenon (E_w sim 10^{42} erg, where E_w is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spindown energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.
Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s on a time scale of about 12 hours, more than a factor of 6 higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of 3 brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make a thorough study of the present event possible: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the gamma-ray flare, we find that the radio, optical and X-ray emission varies within a factor 2-3, whereas the gamma-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons.
215 - E. Striani , M. Tavani , G. Piano 2011
We report on the extremely intense and fast gamma-ray are above 100 MeV detected by AGILE from the Crab Nebula in mid-April 2011. This event is the fourth of a sequence of reported major gamma-ray flares produced by the Crab Nebula in the period 2007 /mid-2011. These events are attributed to strong radiative and plasma instabilities in the inner Crab Nebula, and their properties are crucial for theoretical studies of fast and efficient particle acceleration up to 10^15 eV. Here we study the very rapid flux and spectral evolution of the event that reached on April 16, 2011 the record-high peak flux of F = (26 +/- 5) x 10^-6 ph cm^-2 s^-1 with a risetime timescale that we determine to be in the range 6-10 hrs. The peak flaring gamma-ray spectrum reaches a distinct maximum near 500 MeV with no substantial emission above 1 GeV. The very rapid risetime and overall evolution of the Crab Nebula are strongly constrain the acceleration mechanisms and challenge MHD models. We briefly discuss the theoretical implications of our observations.
We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type since 2007, was detected in the gamma-ray range with a progressively rising flux since November 10, 2009. The gamma-ray flux reached a value comparable with that of the Vela pulsar on December 2, 2009. Remarkably, between December 2 and 3, 2009 the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F_{gamma,p} = (2000 pm 400) x 10^-8 ph cm^-2 s^-1 for a 1-day integration above 100 MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F simeq (1000 pm 200) x 10^-8 ph cm^-2 s^-1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100 MeV (L_{gamma, source, peak} simeq 3 x 10^46 erg s^-1, for a relativistic Doppler factor of {delta} simeq 30). The total isotropic irradiated energy of the month-long episode in the range 100 MeV - 3 GeV is E_{gamma,iso} simeq 10^56 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.
Cygnus X-1 is the archetypal black hole (BH) binary system in our Galaxy. We report the main results of an extensive search for transient gamma-ray emission from Cygnus X-1 carried out in the energy range 100 MeV - 3 GeV by the AGILE satellite, durin g the period 2007 July - 2009 October. The total exposure time is about 300 days, during which the source was in the hard X-ray spectral state. We divided the observing intervals in 2 or 4 week periods, and searched for transient and persistent emission. We report an episode of significant transient gamma-ray emission detected on 2009, October 16 in a position compatible with Cygnus X-1 optical position. This episode, occurred during a hard spectral state of Cygnus X-1, shows that a 1-2 day time variable emission above 100 MeV can be produced during hard spectral states, having important theoretical implications for current Comptonization models for Cygnus X-1 and other microquasars. Except for this one short timescale episode, no significant gamma-ray emission was detected by AGILE. By integrating all available data we obtain a 2$sigma$ upper limit for the total integrated flux of $F_{gamma,U.L.} = 3 times 10^{-8} rm ph cm^{-2} s^{-1}$ in the energy range 100 MeV - 3 GeV. We then clearly establish the existence of a spectral cutoff in the energy range 1-100 MeV that applies to the typical hard state outside the flaring period and that confirms the historically known spectral cutoff above 1 MeV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا