ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic galaxy alignments constitute the major astrophysical systematic of forthcoming weak gravitational lensing surveys but also yield unique insights into galaxy formation and evolution. We build analytic models for the distribution of galaxy sh apes based on halo properties extracted from the Millennium Simulation, differentiating between early- and late-type galaxies as well as central galaxies and satellites. The resulting ellipticity correlations are investigated for their physical properties and compared to a suite of current observations. The best-faring model is then used to predict the intrinsic alignment contamination of planned weak lensing surveys. We find that late-type galaxy models generally have weak intrinsic ellipticity correlations, marginally increasing towards smaller galaxy separation and higher redshift. The signal for early-type models at fixed halo mass strongly increases by three orders of magnitude over two decades in galaxy separation, and by one order of magnitude from z=0 to z=2. The intrinsic alignment strength also depends strongly on halo mass, but not on galaxy luminosity at fixed mass, or galaxy number density in the environment. We identify models that are in good agreement with all observational data, except that all models over-predict alignments of faint early-type galaxies. The best model yields an intrinsic alignment contamination of a Euclid-like survey between 0.5-10% at z>0.6 and on angular scales larger than a few arcminutes. Cutting 20% of red foreground galaxies using observer-frame colours can suppress this contamination by up to a factor of two.
82 - B. Joachimi 2012
The statistical properties of the ellipticities of galaxy images depend on how galaxies form and evolve, and therefore constrain models of galaxy morphology, which are key to the removal of the intrinsic alignment contamination of cosmological weak l ensing surveys, as well as to the calibration of weak lensing shape measurements. We construct such models based on the halo properties of the Millennium Simulation and confront them with a sample of 90,000 galaxies from the COSMOS Survey, covering three decades in luminosity and redshifts out to z=2. The ellipticity measurements are corrected for effects of point spread function smearing, spurious image distortions, and measurement noise. Dividing galaxies into early, late, and irregular types, we find that early-type galaxies have up to a factor of two lower intrinsic ellipticity dispersion than late-type galaxies. None of the samples shows evidence for redshift evolution, while the ellipticity dispersion for late-type galaxies scales strongly with absolute magnitude at the bright end. The simulation-based models reproduce the main characteristics of the intrinsic ellipticity distributions although which model fares best depends on the selection criteria of the galaxy sample. We observe fewer close-to-circular late-type galaxy images in COSMOS than expected for a sample of randomly oriented circular thick disks and discuss possible explanations for this deficit.
We present an exploration of weak lensing by large-scale structure in the linear regime, using the third-year (T0003) CFHTLS Wide data release. Our results place tight constraints on the scaling of the amplitude of the matter power spectrum sigma_8 w ith the matter density Omega_m. Spanning 57 square degrees to i_AB = 24.5 over three independent fields, the unprecedented contiguous area of this survey permits high signal-to-noise measurements of two-point shear statistics from 1 arcmin to 4 degrees. Understanding systematic errors in our analysis is vital in interpreting the results. We therefore demonstrate the percent-level accuracy of our method using STEP simulations, an E/B-mode decomposition of the data, and the star-galaxy cross correlation function. We also present a thorough analysis of the galaxy redshift distribution using redshift data from the CFHTLS T0003 Deep fields that probe the same spatial regions as the Wide fields. We find sigma_8(Omega_m/0.25)^0.64 = 0.785+-0.043 using the aperture-mass statistic for the full range of angular scales for an assumed flat cosmology, in excellent agreement with WMAP3 constraints. The largest physical scale probed by our analysis is 85 Mpc, assuming a mean redshift of lenses of 0.5 and a LCDM cosmology. This allows for the first time to constrain cosmology using only cosmic shear measurements in the linear regime. Using only angular scales theta> 85 arcmin, we find sigma_8(Omega_m/0.25)_lin^0.53 = 0.837+-0.084, which agree with the results from our full analysis. Combining our results with data from WMAP3, we find Omega_m=0.248+-0.019 and sigma_8 = 0.771+-0.029.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا