ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze dilepton emission from hot and dense matter using a hybrid approach based on the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model with an intermediate hydrodynamic stage for the description of heavy-ion collisions at re lativistic energies. During the hydrodynamic stage, the production of lepton pairs is described by radiation rates for a strongly interacting medium in thermal equilibrium. In the low mass region, hadronic thermal emission is evaluated assuming vector meson dominance including in-medium modifications of the rho meson spectral function through scattering from nucleons and pions in the heat bath. In the intermediate mass region, the hadronic rate is essentially determined by multi-pion annihilation processes. Emission from quark-antiquark annihilation in the quark gluon plasma is taken into account as well. When the system is sufficiently dilute, the hydrodynamic description breaks down and a transition to a final cascade stage is performed. In this stage dimuon emission is evaluated as commonly done in transport models. Focusing on the enhancement with respect to the contribution from long-lived hadron decays after freezout observed at the SPS in the low mass region of the dilepton spectra, the relative importance of the different thermal contributions and of the two dynamical stages is investigated. We find that three separated regions can be identified in the invariant mass spectra. Whereas the very low and the intermediate mass regions mostly receive contribution from the thermal dilepton emission, the region around the vector meson peak is dominated by the cascade emission. Above the rho-peak region the spectrum is driven by QGP radiation. Analysis of the dimuon transverse mass spectra reveals that the thermal hadronic emission shows an evident mass ordering not present in the emission from the QGP.
We present recent results on bulk observables and electromagnetic probes obtained using a hybrid approach based on the Ultrarelativistic Quantum Molecular Dynamics transport model with an intermediate hydrodynamic stage for the description of heavy-i on collisions at AGS, SPS and RHIC energies. After briefly reviewing the main results for particle multiplicities, elliptic flow, transverse momentum and rapidity spectra, we focus on photon and dilepton emission from hot and dense hadronic matter.
We report on a self-consistent calculation of the in-medium spectral functions of the rho and omega mesons at finite baryon density. The corresponding in-medium dilepton spectrum is generated and compared with HADES data. We find that an iterative ca lculation of the vector meson spectral functions provides a reasonable description of the experimental data.
The in-medium spectral functions of $rho$ and $omega$ mesons and the broadening of the nucleon resonances at finite baryon density are calculated self-consistently by combining a resonance dominance model for the vector meson production with an exten ded vector meson dominance model. The influence of the in-medium modifications of the vector meson properties on the dilepton spectrum in heavy-ion collisions is investigated. The dilepton spectrum is generated for the C+C reaction at 2.0$A$ GeV and compared with recent HADES Collaboration data. The collision dynamics is then described by the Tubingen relativistic quantum molecular dynamics transport model. We find that an iterative calculation of the vector meson spectral functions that takes into account the broadening of the nucleon resonances due to their increased in-medium decay branchings is convergent and provides a reasonable description of the experimental data in the mass region $0.45leq M leq 0.75$ GeV. On the other side, the theoretical calculations slightly underestimate the region $m_pileq M leq 0.4$ GeV. Popular in-medium scenarios such as a schematic collisional broadening and dropping vector mesons masses are discussed as well.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا