ترغب بنشر مسار تعليمي؟ اضغط هنا

We report angle-resolved photoelectron spectroscopy measurements of the quantum critical metal Sr3Ru2O7 revealing itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of < 6 meV, nearly three orders of magnitude l ower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from the hybridization of light and strongly renormalized, heavy quasiparticle bands. For the largest Fermi surface sheet we find a marked k-dependence of the renormalization and show that it correlates with the Ru 4d - O 2p hybridization.
We investigate the normal state of the 11 iron-based superconductor FeSe0.42Te0.58 by angle resolved photoemission. Our data reveal a highly renormalized quasiparticle dispersion characteristic of a strongly correlated metal. We find sheet dependent effective carrier masses between ~ 3 - 16 m_e corresponding to a mass enhancement over band structure values of m*/m_band ~ 6 - 20. This is nearly an order of magnitude higher than the renormalization reported previously for iron-arsenide superconductors of the 1111 and 122 families but fully consistent with the bulk specific heat.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا