ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The increased sensitivity and high spectral resolution of millimeter telescopes allow the detection of an increasing number of isotopically substituted molecules in the interstellar medium. The 14N/ 15N ratio is difficult to measure directly for carbon containing molecules. Aims. We want to check the underlying hypothesis that the 13C/ 12C ratio of nitriles and isonitriles is equal to the elemental value via a chemical time dependent gas phase chemical model. Methods. We have built a chemical network containing D, 13C and 15N molecular species after a careful check of the possible fractionation reactions at work in the gas phase. Results. Model results obtained for 2 different physical conditions corresponding respectively to a moderately dense cloud in an early evolutionary stage and a dense depleted pre-stellar core tend to show that ammonia and its singly deuterated form are somewhat enriched in 15N, in agreement with observations. The 14N/ 15N ratio in N2H+ is found to be close to the elemental value, in contrast to previous models which obtain a significant enrichment, as we found that the fractionation reaction between 15N and N2H+ has a barrier in the entrance channel. The large values of the N2H+/15NNH+ and N2H+/ N15NH+ ratios derived in L1544 cannot be reproduced in our model. Finally we find that nitriles and isonitriles are in fact significantly depleted in 13C, questioning previous interpretations of observed C15N, HC15N and H15NC abundances from 13C containing isotopologues.
Dielectronic recombination (DR) of singly charged ions is a reaction pathway that is commonly neglected in chemical models of molecular clouds. In this study we include state-of-the-art DR data for He$^+$, C$^+$, N$^+$, O$^+$, Na$^+$, and Mg$^+$ in c hemical models used to simulate dense molecular clouds, protostars, and diffuse molecular clouds. We also update the radiative recombination (RR) rate coefficients for H$^+$, He$^+$, C$^+$, N$^+$, O$^+$, Na$^+$, and Mg$^+$ to the current state-of-the-art values. The new RR data has little effect on the models. However, the inclusion of DR results in significant differences in gas-grain models of dense, cold molecular clouds for the evolution of a number of surface and gas-phase species. We find differences of a factor of 2 in the abundance for 74 of the 655 species at times of $10^4$--$10^6$ years in this model when we include DR. Of these 74 species, 16 have at least a factor of 10 difference in abundance. We find the largest differences for species formed on the surface of dust grains. These differences are due primarily to the addition of C$^+$ DR, which increases the neutral C abundance, thereby enhancing the accretion of C onto dust. These results may be important for the warm-up phase of molecular clouds when surface species are desorbed into the gas phase. We also note that no reliable state-of-the-art RR or DR data exist for Si$^+$, P$^+$, S$^+$, Cl$^+$, and Fe$^+$. Modern calculations for these ions are needed to better constrain molecular cloud models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا