ترغب بنشر مسار تعليمي؟ اضغط هنا

The symmetry properties of the order parameter characterize different phases of unconventional superconductors. In the case of the heavy-fermion superconductor UPt$_3$, a key question is whether its multiple superconducting phases preserve or break t ime-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt$_3$ at normal incidence, finding that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt$_3$, implying a complex two-component order parameter for superconductivity in this system.
Recent experimental and theoretical interest in the superconducting phase of the heavy fermion material URu$_2$Si$_2$ has led to a number of proposals in which the superconducting order parameter breaks time-reversal symmetry (TRS). In this study we measured polar Kerr effect (PKE) as a function of temperature for several high-quality single crystals of URu$_2$Si$_2$. We find an onset of PKE below the superconducting transition that is consistent with a TRS-breaking order parameter. This effect appears to be independent of an additional, possibly extrinsic, PKE generated above the hidden order transition at $T_{HO}=17.5$ K, and contains structure below $T_c$ suggestive of additional physics within the superconducting state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا