ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a method to derive outflow velocities in the solar corona using different data sets including solar wind mass flux coming from the SWAN/SOHO instrument, electron density values from LASCO-C2 and interplanetary solar wind velocities derived from ground-based Interplanetary Scintillation Observations (IPS). In a first step, we combine the LASCO electron densities at 6 solar radii and the IPS velocities, and compare the product to the SWAN mass fluxes. It is found that this product represents the actual mass flux at 6 solar radii for the fast wind, but not for the slow wind. In regions dominated by the slow wind, the fluxes derived from SWAN are systematically smaller. This is interpreted as a proof that the fast solar wind has reached its terminal velocity at about 6 solar radii and expands with constant velocity beyond this distance. On the contrary, the slow solar wind has reached only half of its terminal value and is thus accelerated further out. In a second step, we combine the LASCO-C2 density profiles and the SWAN flux data to derive velocity profiles in the corona between 2.5 and 6 solar radii. Such profiles can be used to test models of the acceleration mechanism of the fast solar wind.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا