ترغب بنشر مسار تعليمي؟ اضغط هنا

Major astrophysical questions related to the formation and evolution of structures, and more specifically of galaxy groups and clusters, will still be open in the coming decade and beyond: what is the interplay of galaxy, supermassive black hole, and intergalactic gas evolution in the most massive objects in the Universe - galaxy groups and clusters? What are the processes driving the evolution of chemical enrichment of the hot diffuse gas in large-scale structures? How and when did the first galaxy groups in the Universe, massive enough to bind more than 10^7 K gas, form? Focussing on the period when groups and clusters assembled (0.5<z<2.5), we show that, due to the continuum and line emission of this hot intergalactic gas at X-ray wavelengths, Athena+, combining high sensitivity with excellent spectral and spatial resolution, will deliver breakthrough observations in view of the aforementioned issues. Indeed, the physical and chemical properties of the hot intra-cluster gas, and their evolution across time, are a key to understand the co-evolution of galaxy and supermassive black hole within their environments.
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
The quantity Y_ X, the product of the X-ray temperature T_ X and gas mass M_ g, has recently been proposed as a robust low-scatter mass indicator for galaxy clusters. Using precise measurements from XMM-Newton data of a sample of 10 relaxed nearby cl usters, spanning a Y_ X range of 10^13 -10^15 M_sun keV, we investigate the M_500-Y_ X relation. The M_500 - Y_ X data exhibit a power law relation with slope alpha=0.548 pm 0.027, close to the self-similar value (3/5) and independent of the mass range considered. However, the normalisation is sim 20% below the prediction from numerical simulations including cooling and galaxy feedback. We discuss two effects that could contribute to the normalisation offset: an underestimate of the true mass due to the HE assumption used in X-ray mass estimates, and an underestimate of the hot gas mass fraction in the simulations. A comparison of the functional form and scatter of the relations between various observables and the mass suggest that Y_ X may indeed be a better mass proxy than T_ X or M_g,500.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا