ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have be en reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 hours. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz/s and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however they possess some of the characteristics of electron-cyclotron maser emission.
The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instr umental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFARs standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (4 solar radii from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona.
We report the anisotropic magnetic properties of Ho2Ge2O7 determined from dc and ac magnetization, specific heat and powder neutron diffraction experiments. The magnetic lanthanide sublattice, seen in our refinement of the tetragonal pyrogermanate cr ystal structure, is a right-handed spiral of edge-sharing and corner-sharing triangles; the local Ho-O coordination indicates that the crystal field is anisotropic. Susceptibility and magnetization data indeed show that the magnetism is highly anisotropic, and the magnetic structure has the Ho moments confined to the plane perpendicular to the structural spiral. The ordered moment of Ho3+, as determined from refinement of the neutron diffraction data, is 9.0 mu_B. Magnetic ordering occurs around 1.6 K. Temperature and field dependent ac susceptibility measurements show that this compound displays spin relaxation phenomena analogous to what is seen in the spin ice pyrochlore system Ho2Ti2O7.
The large magnetic anisotropy in the layered ferromagnet Fe_{1/4}TaS_2 leads to very sharp reversals of the magnetization $bf M$ at the coercive field. We have exploited this feature to measure the anomalous Hall effect (AHE), focussing on the AHE co nductivity $sigma^A_{xy}$ in the inelastic regime. At low temperature T (5-50 K), $sigma^A_{xy}$ is T-independent, consistent with the Berry-phase/Karplus-Luttinger theory. Above 50 K, we extract an inelastic AHE conductivity $sigma^{in}_{xy}$ that scales as the square of $Deltarho$ (the T dependent part of the resistivity $rho$). The term $sigma^{in}_{xy}$ clarifies the T dependence and sign-reversal of the AHE coefficient R_s(T). We discuss the possible ubiquity of $sigma^{in}_{xy}$ in ferromagnets, and ideas for interpreting its scaling with $(Deltarho)^2$. Measurements of the magnetoresistance (MR) reveal a rich pattern of behavior vs. T and field tilt-angle. We show that the 2 mechanisms, the anisotropic MR effect and field-suppression of magnons, account for the intricate MR behavior, including the bow-tie features caused by the sharp reversals in $bf M$.
Mn3V2O8 is a magnetic system in which S = 5/2 Mn2+ is found in the kagome staircase lattice. Here we report the magnetic phase diagram for temperatures above 2 K and applied magnetic fields below 9 T, characterized by measurements of the magnetizatio n and specific heat with field along the three unique lattice directions. At low applied magnetic fields, the system first orders magnetically below Tm1 ~ 21 K, and then shows a second magnetic phase transition at Tm2 ~ 15 K. In addition, a phase transition that is apparent in specific heat but not seen in magnetization is found for all three applied field orientations, converging towards Tm2 as H -> 0. The magnetic behavior is highly anisotropic, with critical fields for magnetic phase boundaries much higher when the field is applied perpendicular to the Kagome staircase plane than when applied in-plane. The field-temperature (H - T) phase diagrams are quite rich, with 7 distinct phases observed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا