ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the effects of disorder within the T=0 Brinkman-Rice (BR) scenario for the Mott metal-insulator transition (MIT) in two dimensions (2d). For sufficiently weak disorder the transition retains the Mott character, as signaled by the vanis hing of the local quasiparticles (QP) weights Z_{i} and strong disorder screening at criticality. In contrast to the behavior in high dimensions, here the local spatial fluctuations of QP parameters are strongly enhanced in the critical regime, with a distribution function P(Z) ~ Z^{alpha-1} and alpha tends to zero at the transition. This behavior indicates a robust emergence of an electronic Griffiths phase preceding the MIT, in a fashion surprisingly reminiscent of the Infinite Randomness Fixed Point scenario for disordered quantum magnets.
We investigate the effects of weak to moderate disorder on the T=0 Mott metal-insulator transition in two dimensions. Our model calculations demonstrate that the electronic states close to the Fermi energy become more spatially homogeneous in the cri tical region. Remarkably, the higher energy states show the opposite behavior: they display enhanced spatial inhomogeneity precisely in the close vicinity to the Mott transition. We suggest that such energy-resolved disorder screening is a generic property of disordered Mott systems.
We report measurements of temperature dependent magnetic susceptibility, resonant x-ray magnetic scattering (XRMS) and heat capacity on single crystals of Tb1-xLaxRhIn5 for nominal concentrations in the range 0.0 < x < 1.0. TbRhIn5 is an antiferromag netic (AFM) compound with TN ~ 46 K, which is the highest TN values along the RRhIn5 series. We explore the suppression of the antiferromagnetic (AFM) state as a function of La-doping considering the effects of La-induced dilution and perturbations to the tetragonal crystalline electrical field (CEF) on the long range magnetic interaction between the Tb$^{3+}$ ions. Additionally, we also discuss the role of disorder. Our results and analysis are compared to the properties of the undoped compound and of other members of the RRhIn5 family and structurally related compounds (R2RhIn8 and RIn3). The XRMS measurements reveal that the commensurate magnetic structure with the magnetic wave-vector (0,1/2,1/2) observed for the undoped compound is robust against doping perturbations in Tb0.6La0.4RhIn5 compound.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا