ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximately 70 percent of the nearby white dwarfs appear to be single stars, with the remainder being members of binary or multiple star systems. The most numerous and most easily identifiable systems are those in which the main sequence companion is an M star, since even if the systems are unresolved the white dwarf either dominates or is at least competitive with the luminosity of the companion at optical wavelengths. Harder to identify are systems where the non-degenerate component has a spectral type earlier than M0 and the white dwarf becomes the less luminous component. Taking Sirius as the prototype, these latter systems are referred to here as Sirius-Like. There are currently 98 known Sirius-Like systems. Studies of the local white dwarf population within 20 parsecs indicate that approximately 8 per cent of all white dwarfs are members of Sirius-Like systems, yet beyond 20 parsecs the frequency of known Sirius-Like systems declines to between 1 and 2 per cent, indicating that many more of these systems remain to be found. Estimates are provided for the local space density of Sirius- Like systems and their relative frequency among both the local white dwarf population and the local population of A to K main sequence stars. The great majority of currently unidentified Sirius-Like systems will likely turn out to be closely separated and unresolved binaries. Ways to observationally detect and study these systems are discussed.
333 - P. Godon , E. M. Sion , K. Levay 2012
We present an online catalog containing spectra and supporting information for cataclysmic variables that have been observed with the Far Ultraviolet Spectroscopic Explorer (FUSE). For each object in the catalog we list some of the basic system param eters such as (RA,Dec), period, inclination, white dwarf mass, as well as information on the available FUSE spectra: data ID, observation date and time, and exposure time. In addition, we provide parameters needed for the analysis of the FUSE spectra such as the reddening E(B-V), distance, and state (high, low, intermediate) of the system at the time it was observed. For some of these spectra we have carried out model fits to the continuum with synthetic stellar and/or disk spectra using the codes TLUSTY and SYNSPEC. We provide the parameters obtained from these model fits; this includes the white dwarf temperature, gravity, projected rotational velocity and elemental abundances of C, Si, S and N, together with the disk mass accretion rate, the resulting inclination and model-derived distance (when unknown). For each object one or more figures are provided (as gif files) with line identification and model fit(s) when available. The FUSE spectra as well as the synthetic spectra are directly available for download as ascii tables. References are provided for each object as well as for the model fits. In this article we present 36 objects, and additional ones will be added to the online catalog in the future. In addition to cataclysmic variables, we also include a few related objects, such as a wind accreting white dwarf, a pre-cataclysmic variable and some symbiotics.
113 - E. M. Sion , J. Moreno , P. Godon 2012
AG Dra is a symbiotic variable consisting of a metal poor, yellow giant mass donor under-filling its Roche lobe, and a hot accreting white dwarf, possibly surrounded by an optically thick, bright accretion disk which could be present from wind accret ion. We constructed NLTE synthetic spectral models for white dwarf spectra and optically thick accretion disk spectra to model a FUSE spectrum of AG Dra, obtained when the hot component is viewed in front of the yellow giant. The spectrum has been de-reddened (E(B-V) = 0.05) and the model fitting carried out, with the distance regarded as a free parameter, but required to be larger than the Hipparcos lower limit of 1 kpc. We find that the best-fitting model is a bare accreting white dwarf with Mwd = 0.4 Msun, Teff = 80,000K and a model-derived distance of 1543 pc. Higher temperatures are ruled out due to excess flux at the shortest wavelengths while a lower temperature decreases the distance below 1 kpc. Any accretion disk which might be present is a only a minor contributor to the FUV flux. This raises the possibility that the soft X-rays originate from a very hot boundary layer between a putative accretion disk and the accreting star.
We have carried out an analysis of the HST STIS archival spectra of the magnetic white dwarf in the Hyades eclipsing-spectroscopic, post-common envelope binary V471 Tauri, time resolved on the orbit and on the X-ray rotational phase of the magnetic w hite dwarf. An HST STIS spectrum obtained during primary eclipse reveals a host of transition region/chromospheric emission features including N V (1238, 1242), Si IV (1393, 1402), C IV (1548, 1550) and He II (1640). The spectroscopic characteristics and emission line fluxes of the transition region/chromosphere of the very active, rapidly rotating, K2V component of V471 Tauri, are compared with the emission characteristics of fast rotating K dwarfs in young open clusters. We have detected a number of absorption features associated with metals accreted onto the photosphere of the magnetic white dwarf from which we derive radial velocities. All of the absorption features are modulated on the 555s rotation period of the white dwarf with maximum line strength at rotational phase 0.0 when the primary magnetic accretion region is facing the observer. The photospheric absorption features show no clear evidence of Zeeman splitting and no evidence of a correlation between their variations in strength and orbital phase. We report clear evidence of a secondary accretion pole. We derive C and Si abundances from the Si IV and C III features. All other absorption lines are either interstellar or associated with a region above the white dwarf and/or with coronal mass ejection events illuminated as they pass in front of the white dwarf.
114 - P. Godon , E. M. Sion 2011
We carry out a spectral analysis of the archival FUSE spectrum of the VY Scl nova-like cataclysmic variable MV Lyrae obtained in the high state. We find that standard disk models fail to fit the flux in the shorter wavelengths of FUSE (< 950$A). An i mproved fit is obtained by including a modeling of the boundary layer at the inner edge of the disk. The result of the modeling shows that in the high state the disk has a moderate accretion rate of about 2.E09 solar mass per year, a low inclination, a boundary layer with a temperature of around 100,000K, and size 0.20Rwd, and the white dwarf is possibly heated up to a temperature of 50,000K or higher.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا