ترغب بنشر مسار تعليمي؟ اضغط هنا

A recently discovered mechanism of electric dipole spin resonance, mediated by the hyperfine interaction, is investigated experimentally and theoretically. The effect is studied using a spin-selective transition in a GaAs double quantum dot. The reso nant frequency is sensitive to the instantaneous hyperfine effective field, revealing a nuclear polarization created by driving the resonance. A device incorporating a micromagnet exhibits a magnetic field difference between dots, allowing electrons in either dot to be addressed selectively. An unexplained additional signal at half the resonant frequency is presented.
An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated experimentally and theoretically. The magnetic field dependence and absence of associated Rabi oscillations are consistent with a novel hyperfine mechan ism. The resonant frequency is sensitive to the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference between dots, allowing electrons in either dot to be addressed selectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا