ترغب بنشر مسار تعليمي؟ اضغط هنا

Circuit quantum electrodynamics systems are typically built from resonators and two-level artificial atoms, but the use of multi-level artificial atoms instead can enable promising applications in quantum technology. Here we present an implementation of a Josephson junction circuit dedicated to operate as a V-shape artificial atom. Based on a concept of two internal degrees of freedom, the device consists of two transmon qubits coupled by an inductance. The Josephson nonlinearity introduces a strong diagonal coupling between the two degrees of freedom that finds applications in quantum non-demolition readout schemes, and in the realization of microwave cross-Kerr media based on superconducting circuits.
81 - I. Diniz , E. Dumur , O. Buisson 2013
We propose a Quantum Non Demolition (QND) read-out scheme for a superconducting artificial atom coupled to a resonator in a circuit QED architecture, for which we estimate a very high measurement fidelity without Purcell effect limitations. The devic e consists of two transmons coupled by a large inductance, giving rise to a diamond-shape artificial atom with a logical qubit and an ancilla qubit interacting through a cross-Kerr like term. The ancilla is strongly coupled to a transmission line resonator. Depending on the qubit state, the ancilla is resonantly or dispersively coupled to the resonator, leading to a large contrast in the transmitted microwave signal amplitude. This original method can be implemented with state of the art Josephson parametric amplifier, leading to QND measurements in a few tens of nanoseconds with fidelity as large as 99.9 %.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا