ترغب بنشر مسار تعليمي؟ اضغط هنا

55 - T. Pohl , E. Demler , M. D. Lukin 2009
We describe a method for controlling many-body states in extended ensembles of Rydberg atoms, forming crystalline structures during laser excitation of a frozen atomic gas. Specifically, we predict the existence of an excitation number staircase in l aser excitation of atomic ensembles into Rydberg states. Each step corresponds to a crystalline state with a well-defined of regularly spaced Rydberg atoms. We show that such states can be selectively excited by chirped laser pulses. Finally, we demonstarte that, sing quantum state transfer from atoms to light, such crystals can be used to create crystalline photonic states and can be probed via photon correlation measurements.
We propose a new method for detecting paired states in either bosonic or fermionic systems using interference experiments with independent or weakly coupled low dimensional systems. We demonstrate that our method can be used to detect both the FFLO a nd the d-wave paired states of fermions, as well as quasicondensates of singlet pairs for polar F=1 atoms in two dimensional systems. We discuss how this method can be used to perform phase-sensitive determination of the symmetry of the pairing amplitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا