ترغب بنشر مسار تعليمي؟ اضغط هنا

143 - E. Cobanera , G. Ortiz 2015
Systems of free fermions are classified by symmetry, space dimensionality, and topological properties described by K-homology. Those systems belonging to different classes are inequivalent. In contrast, we show that by taking a many-body/Fock space v iewpoint it becomes possible to establish equivalences of topological insulators and superconductors in terms of duality transformations. These mappings connect topologically inequivalent systems of fermions, jumping across entries in existent classification tables, because of the phenomenon of symmetry transmutation by which a symmetry and its dual partner have identical algebraic properties but very different physical interpretations. To constrain our study to established classification tables, we define and characterize mathematically Gaussian dualities as dualities mapping free fermions to free fermions (and interacting to interacting). By introducing a large, flexible class of Gaussian dualities we show that any insulator is dual to a superconductor, and that fermionic edge modes are dual to Majorana edge modes, that is, the Gaussian dualities of this paper preserve the bulk-boundary correspondence. Transmutation of relevant symmetries, particle number, translation, and time reversal is also investigated in detail. As illustrative examples, we show the duality equivalence of the dimerized Peierls chain and the Majorana chain of Kitaev, and a two-dimensional Kekule-type topological insulator, including graphene as a special instance in coupling space, dual to a p-wave superconductor. Since our analysis extends to interacting fermion systems we also briefly discuss some such applications.
39 - E. Cobanera , G. Ortiz , 2012
We introduce a universally applicable method, based on the bond-algebraic theory of dualities, to search for generalized order parameters in disparate systems including non-Landau systems with topological order. A key notion that we advance is that o f {em holographic symmetry}. It reflects situations wherein global symmetries become, under a duality mapping, symmetries that act solely on the systems boundary. Holographic symmetries are naturally related to edge modes and localization. The utility of our approach is illustrated by systematically deriving generalized order parameters for pure and matter-coupled Abelian gauge theories, and for some models of topological matter.
136 - E. Cobanera , 2009
We show how classical and quantum dualities, as well as duality relations that appear only in a sector of certain theories (emergent dualities), can be unveiled, and systematically established. Our method relies on the use of morphisms of the bond al gebra of a quantum Hamiltonian. Dualities are characterized as unitary mappings implementing such morphisms, whose even powers become symmetries of the quantum problem. Dual variables -which were guessed in the past- can be derived in our formalism. We obtain new self-dualities for four-dimensional Abelian gauge field theories.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا