ترغب بنشر مسار تعليمي؟ اضغط هنا

We present optical photometry and spectra of the super luminous type II/IIn supernova CSS121015:004244+132827 (z=0.2868) spanning epochs from -30 days (rest frame) to more than 200 days after maximum. CSS121015 is one of the more luminous supernova e ver found and one of the best observed. The photometric evolution is characterized by a relatively fast rise to maximum (~40 days in the SN rest frame), and by a linear post-maximum decline. The light curve shows no sign of a break to an exponential tail. A broad Halpha is first detected at ~ +40 days (rest-frame). Narrow, barely-resolved Balmer and [O III] 5007 A lines, with decreasing strength, are visible along the entire spectral evolution. The spectra are very similar to other super luminous supernovae (SLSNe) with hydrogen in their spectrum, and also to SN 2005gj, sometimes considered a type Ia interacting with H-rich CSM. The spectra are also similar to a subsample of H-deficient SLSNe. We propose that the properties of CSS121015 are consistent with the interaction of the ejecta with a massive, extended, opaque shell, lost by the progenitor decades before the final explosion, although a magnetar powered model cannot be excluded. Based on the similarity of CSS121015 with other SLSNe (with and without H), we suggest that the shocked-shell scenario should be seriously considered as a plausible model for both types of SLSN.
We report the results of a 3 year-long dedicated monitoring campaign of a restless Luminous Blue Variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper we present the full historical data set from 2009-2012 with multi-wavelength dense coverage of the two high luminosity events between August - September 2012. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting ~50 days) with a peak of 3x10^41 erg/s, and the 2012b event (14 day rise time, still ongoing) with a peak of 8x10^42 erg/s. The latter event reached an absolute R-band magnitude of about -18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features (~13000 km/s) in September 2011, one year before the current SN-like event. This implies that the detection of such high velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.
We present an optical photometric and spectroscopic study of the very luminous type IIn SN 2006gy for a time period spanning more than one year. In photometry, a broad, bright (M_R~-21.7) peak characterizes all BVRI light curves. Afterwards, a rapid luminosity fading is followed by a phase of slow luminosity decline between day ~170 and ~237. At late phases (>237 days), because of the large luminosity drop (>3 mag), only upper visibility limits are obtained in the B, R and I bands. In the near-infrared, two K-band detections on days 411 and 510 open new issues about dust formation or IR echoes scenarios. At all epochs the spectra are characterized by the absence of broad P-Cygni profiles and a multicomponent Halpha profile, which are the typical signatures of type IIn SNe. After maximum, spectroscopic and photometric similarities are found between SN 2006gy and bright, interaction-dominated SNe (e.g. SN 1997cy, SN 1999E and SN 2002ic). This suggests that ejecta-CSM interaction plays a key role in SN 2006gy about 6 to 8 months after maximum, sustaining the late-time-light curve. Alternatively, the late luminosity may be related to the radioactive decay of ~3M_sun of 56Ni. Models of the light curve in the first 170 days suggest that the progenitor was a compact star (R~6-8 10^(12)cm, M_ej~5-14M_sun), and that the SN ejecta collided with massive (6-10M_sun), opaque clumps of previously ejected material. These clumps do not completely obscure the SN photosphere, so that at its peak the luminosity is due both to the decay of 56Ni and to interaction with CSM. A supermassive star is not required to explain the observational data, nor is an extra-ordinarily large explosion energy.
The results of a world-wide coordinated observational campaign on the broad-lined Type Ic SN 2003jd are presented. In total, 74 photometric data points and 26 spectra were collected using 11 different telescopes. SN 2003jd is one of the most luminous SN Ic ever observed. A comparison with other Type Ic supernovae (SNe Ic) confirms that SN 2003jd represents an intermediate case between broad-line events (2002ap, 2006aj), and highly energetic SNe (1997ef, 1998bw, 2003dh, 2003lw), with an ejected mass of M_{ej} = 3.0 +/- 1 Mo and a kinetic energy of E_{k}(tot) = 7_{-2}^{+3} 10^{51} erg. SN 2003jd is similar to SN 1998bw in terms of overall luminosity, but it is closer to SNe 2006aj and 2002ap in terms of light-curve shape and spectral evolution. The comparison with other SNe Ic, suggests that the V-band light curves of SNe Ic can be partially homogenized by introducing a time stretch factor. Finally, due to the similarity of SN 2003jd to the SN 2006aj/XRF 060218 event, we discuss the possible connection of SN 2003jd with a GRB.
To measure the supernova (SN) rates at intermediate redshift we performed the Southern inTermediate Redshift ESO Supernova Search (STRESS). Unlike most of the current high redshift SN searches, this survey was specifically designed to estimate the ra te for both type Ia and core collapse (CC) SNe. We counted the SNe discovered in a selected galaxy sample measuring SN rate per unit blue band luminosity. Our analysis is based on a sample of ~43000 galaxies and on 25 spectroscopically confirmed SNe plus 64 selected SN candidates. Our approach is aimed at obtaining a direct comparison of the high redshift and local rates and at investigating the dependence of the rates on specific galaxy properties, most notably their colour. The type Ia SN rate, at mean redshift z=0.3, amounts to 0.22^{+0.10+0.16}_{-0.08 -0.14} h_{70}^2 SNu, while the CC SN rate, at z=0.21, is 0.82^{+0.31 +0.30}_{-0.24 -0.26} h_{70}^2 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to local value, the CC SN rate at z=0.2 is higher by a factor of ~2 already at redshift, whereas the type Ia SN rate remains almost constant. This implies that a significant fraction of SN Ia progenitors has a lifetime longer than 2-3 Gyr. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. SN rates per unit volume were found to be consistent with other measurements showing a steeper evolution with redshift for CC SNe with respect to SNe Ia. Finally we have exploited the link between star formation (SF) and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا