ترغب بنشر مسار تعليمي؟ اضغط هنا

Bose-Einstein condensates of dilute gases are well-suited for investigations of vortex dynamics and turbulence in quantum fluids, yet there has been little experimental research into the approaches that may be most promising for generating states of two-dimensional turbulence in these systems. Here we give an overview of techniques for generating the large and disordered vortex distributions associated with two-dimensional quantum turbulence. We focus on describing methods explored in our Bose-Einstein condensation laboratory, and discuss the suitability of these methods for studying various aspects of two-dimensional quantum turbulence. We also summarize some of the open questions regarding our own understanding of these mechanisms of two-dimensional quantum turbulence generation in condensates. We find that while these disordered distributions of vortices can be generated by a variety of techniques, further investigation is needed to identify methods for obtaining quasi-steady-state quantum turbulence in condensates.
Under suitable forcing a fluid exhibits turbulence, with characteristics strongly affected by the fluids confining geometry. Here we study two-dimensional quantum turbulence in a highly oblate Bose-Einstein condensate in an annular trap. As a compres sible quantum fluid, this system affords a rich phenomenology, allowing coupling between vortex and acoustic energy. Small-scale stirring generates an experimentally observed disordered vortex distribution that evolves into large-scale flow in the form of a persistent current. Numerical simulation of the experiment reveals additional characteristics of two-dimensional quantum turbulence: spontaneous clustering of same-circulation vortices, and an incompressible energy spectrum with $k^{-5/3}$ dependence for low wavenumbers $k$ and $k^{-3}$ dependence for high $k$.
We report experimental observations and numerical simulations of the formation, dynamics, and lifetimes of single and multiply charged quantized vortex dipoles in highly oblate dilute-gas Bose-Einstein condensates (BECs). We nucleate pairs of vortice s of opposite charge (vortex dipoles) by forcing superfluid flow around a repulsive gaussian obstacle within the BEC. By controlling the flow velocity we determine the critical velocity for the nucleation of a single vortex dipole, with excellent agreement between experimental and numerical results. We present measurements of vortex dipole dynamics, finding that the vortex cores of opposite charge can exist for many seconds and that annihilation is inhibited in our highly oblate trap geometry. For sufficiently rapid flow velocities we find that clusters of like-charge vortices aggregate into long-lived dipolar flow structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا