ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a novel approach for time series classification where we represent time series data as plot images and feed them to a simple CNN, outperforming several state-of-the-art methods. We propose a simple and highly replicable way of plotting the time series, and feed these images as input to a non-optimized shallow CNN, without any normalization or residual connections. These representations are no more than default line plots using the time series data, where the only pre-processing applied is to reduce the number of white pixels in the image. We compare our method with different state-of-the-art methods specialized in time series classification on two real-world non public datasets, as well as 98 datasets of the UCR dataset collection. The results show that our approach is very promising, achieving the best results on both real-world datasets and matching / beating the best state-of-the-art methods in six UCR datasets. We argue that, if a simple naive design like ours can obtain such good results, it is worth further exploring the capabilities of using image representation of time series data, along with more powerful CNNs, for classification and other related tasks.
In this work we deal with partial (co)action of multiplier Hopf algebras on not necessarily unital algebras. Our main goal is to construct a Morita context relating the coinvariant algebra $R^{underline{coA}}$ with a certain subalgebra of the smash p roduct $R#widehat{A}$. Besides this we present the notion of partial Galois coaction, which is closely related to this Morita context.
It is well-known that is spite of sharing some properties with conventional particles, topological geons in general violate the spin-statistics theorem. On the other hand, it is generally believed that in quantum gravity theories allowing for topolog y change, using pair creation and annihilation of geons, one should be able to recover this theorem. In this paper, we take an alternative route, and use an algebraic formalism developed in previous work. We give a description of topological geons where an algebra of observables is identified and quantized. Different irreducible representations of this algebra correspond to different kinds of geons, and are labeled by a non-abelian charge and magnetic flux. We then find that the usual spin-statistics theorem is indeed violated, but a new spin-statistics relation arises, when we assume that the fluxes are superselected. This assumption can be proved if all observables are local, as is generally the case in physical theories. Finally, we also show how our approach fits into conventional formulations of quantum gravity.
The topology of orientable (2 + 1)d spacetimes can be captured by certain lumps of non-trivial topology called topological geons. They are the topological analogues of conventional solitons. We give a description of topological geons where the degree s of freedom related to topology are separated from the complete theory that contains metric (dynamical) degrees of freedom. The formalism also allows us to investigate processes of quantum topology change. They correspond to creation and annihilation of quantum geons. Selection rules for such processes are derived.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا