ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the role of radial migration of stars on the chemical evolution of the Milky Way disk. In particular, we are interested in the impact of that process on the local properties of the disk (age-metallicity relation and its dispersion, metallici ty distribution, evolution of abundance ratios) and on the morphological properties of the resulting thick and thin disks.We use a model with several new or up-dated ingredients: atomic and molecular gas phases, star formation depending on molecular gas, yields from the recent homogeneous grid provided by Nomoto et al. (2013), observationally inferred SNIa rates. We describe radial migration with parametrised time- and radius-dependent diffusion coefficients, based on the analysis of a N-body+SPH simulation. We also consider parametrised radial gas flows, induced by the action of the Galactic bar. Our model reproduces well the present day values of most of the main global observables of the MW disk and bulge, and also the observed stacked evolution of MW-type galaxies from van Dokkum et al. (2013). The azimuthally averaged radial velocity of gas inflow is constrained to less than a few tenths of km/s. Radial migration is constrained by the observed dispersion in the age-metallicity relation. Assuming that the thick disk is the oldest (>9 Gyr) part of the disk, we find that the adopted radial migration scheme can reproduce quantitatively the main local properties of the thin and thick disk. The thick disk extends up to ~11 kpc and has a scale length of 1.8 kpc, considerably shorter than the thin disk, because of the inside-out formation scheme. We also show how, in this framework, current and forthcoming spectroscopic observations can constrain the nucleosynthesis yields of massive stars for the metallicity range of 0.1 solar to 2-3 solar.
151 - I. Berentzen 2011
The dynamical evolution of stellar clusters is driven to a large extent by their environment. Several studies so far have considered the effect of tidal fields and their variations, such as, e.g., from giant molecular clouds, galactic discs, or spira l arms. In this paper we will concentrate on a tidal field whose effects on star clusters have not yet been studied, namely that of bars. We present a set of direct N-body simulations of star clusters moving in an analytic potential representing a barred galaxy. We compare the evolution of the clusters moving both on different planar periodic orbits in the barred potential and on circular orbits in a potential obtained by axisymmetrising its mass distribution. We show that both the shape of the underlying orbit and its stability have strong impact on the cluster evolution as well as the morphology and orientation of the tidal tails and the sub-structures therein. We find that the dissolution time-scale of the cluster in our simulations is mainly determined by the tidal forcing along the orbit and, for a given tidal forcing, only very little by the exact shape of the gravitational potential in which the cluster is moving.
176 - M. Romero-Gomez 2011
We study the bar-driven dynamics in the inner part of the Milky Way by using invariant manifolds. This theory has been successfully applied to describe the morphology and kinematics of rings and spirals in external galaxies, and now, for the first ti me, we apply it to the Milky Way. We compute the orbits confined by the invariant manifolds of the unstable periodic orbits located at the ends of the bar. We discuss whether the COBE/DIRBE bar and the Long bar compose a single bar or two independent bars and perform a number of comparisons which, taken together, argue strongly in favour of the former. More specifically, we favour the possibility that the so-called COBE/DIRBE bar is the boxy/peanut bulge of a bar whose outer thin parts are the so-called Long bar. This possibility is in good agreement both with observations of external galaxies, with orbital structure theory and with simulations. We then analyse in detail the morphology and kinematics given by five representative Galactic potentials. Two have a Ferrers bar, two have a quadrupole bar and the last one a composite bar. We first consider only the COBE/DIRBE bar and then extend it to include the effect of the Long bar. We find that the large-scale structure given by the manifolds describes an inner ring, whose size is similar to the near and far 3-kpc arm, and an outer ring, whose properties resemble those of the Galactic Molecular Ring. We also analyse the kinematics of these two structures, under the different galactic potentials, and find they reproduce the main over-densities found in the galactic longitude-velocity CO diagram. Finally, we consider for what model parameters, the global morphology of the manifolds may reproduce the two outer spiral arms. We conclude that this would necessitate either more massive and more rapidly rotating bars, or including in the potential an extra component describing the spiral arms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا