ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure of multilayer graphenes depends strongly on the number of layers as well as the stacking order. Here we explore the electronic transport of purely ABA-stacked trilayer graphenes in a dual-gated field-effect device configurati on. We find that both the zero-magnetic-field transport and the quantum Hall effect at high magnetic fields are distinctly different from the monolayer and bilayer graphenes, and that they show electron-hole asymmetries that are strongly suggestive of a semimetallic band overlap. When the ABA trilayers are subjected to an electric field perpendicular to the sheet, Landau level splittings due to a lifting of the valley degeneracy are clearly observed.
We present measurements of the electronic compressibility, $K$, of bilayer graphene in both zero and finite magnetic fields up to 14 T, and as a function of both the carrier density and electric field perpendicular to the graphene sheet. The low ener gy hyperbolic band structure of bilayer graphene is clearly revealed in the data, as well as a sizable asymmetry between the conduction and valence bands. A sharp increase in $K^{-1}$ near zero density is observed for increasing electric field strength, signaling the controlled opening of a gap between these bands. At high magnetic fields, broad Landau level (LL) oscillations are observed, directly revealing the doubled degeneracy of the lowest LL and allowing for a determination of the disorder broadening of the levels.
We report a study of the cyclotron resonance (CR) transitions to and from the unusual $n=0$ Landau level (LL) in monolayer graphene. Unexpectedly, we find the CR transition energy exhibits large (up to 10%) and non-monotonic shifts as a function of t he LL filling factor, with the energy being largest at half-filling of the $n=0$ level. The magnitude of these shifts, and their magnetic field dependence, suggests that an interaction-enhanced energy gap opens in the $n=0$ level at high magnetic fields. Such interaction effects normally have limited impact on the CR due to Kohns theorem [W. Kohn, Phys. Rev. {bf 123}, 1242 (1961)], which does not apply in graphene as a consequence of the underlying linear band structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا