ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on the motivation that some quantum gravity theories predicts the Lorentz Invariance Violation (LIV) around Planck-scale energy levels, this paper proposes a new formalism that addresses the possible effects of LIV in the electrodynamics. This formalism is capable of changing the usual electrodynamics through high derivative arbitrary mass dimension terms that includes a constant background field controlling the intensity of LIV in the models, producing modifications in the dispersion relations in a manner that is similar to the Myers-Pospelov approach. With this framework, it was possible to generate a CPT-even and CPT-odd generalized modifications of the electrodynamics in order to study the stability and causality of these theories considering the isotropic case for the background field. An additional analysis of unitarity at tree level was considered by studying the saturated propagators. After this analysis, we conclude that, while CPT-even modifications always preserves the stability, causality and unitarity in the boundaries of the effective field theory and therefore may be good candidates for field theories with interactions, the CPT-odd one violates causality and unitarity. This feature is a consequence of the vacuum birefringence characteristics that are present in CPT-odd theories for the photon sector.
We investigate the breaking of Lorentz symmetry caused by the inclusion of an external four-vector via a Chern-Simons-like term in the Duffin-Kemmer-Petiau Lagrangian for massless and massive spin-one fields. The resulting equations of motion lead to the appearance of birefringence, where the corresponding photons are split into two propagation modes. We discuss the gauge invariance of the extended Lagrangian. Throughout the paper, we utilize projection operators to reduce the wave-functions to their physical components, and we provide many new properties of these projection operators.
In this work, we compute some phenomenological bounds for the electromagnetic and massive gravitational high-derivative extensions supposing that it is possible to have an astrophysical process that generates simultaneously gravitational and electrom agnetic waves. We present Lorentz invariance violating (LIV) higher-order derivative models, following the Myers-Pospelov approach, to electrodynamics and massive gravitational waves. We compute the corrected equation of motion of these models, their dispersion relations and the velocities. The LIV parameters for the gravitational and electromagnetic sectors, $xi_{g}$ and $xi_{gamma}$, respectively, were also obtained for three different approaches: luminal photons, time delay of flight and the difference of graviton and photon velocities. These LIV parameters depend on the mass scales where the LIV-terms become relevant, $M$ for the electromagnetic sector and $M_{1}$ for the gravitational one. We obtain, using the values for $M$ and $M_{1}$ found in the literature, that $xi_{g}sim10^{-2}$, which is expected to be phenomenologically relevant and $xi_{gamma}sim10^{3}$, which cannot be suitable for an effective LIV theory. However, we show that $xi_{gamma}$ can be interesting in a phenomenological point of view if $Mgg M_{1}$. Finally the relation between the variation of the velocities of the photon and the graviton in relation to the speed of light was calculated and resulted in $Delta v_{g}/Delta v_{gamma}lesssim1.82times 10^{-3}$.
This paper shows a new approach to obtain analytical topological defects of a 2D Myers-Pospelov Lagrangian for two scalar fields. Such a Lagrangian presents higher-order kinetic terms, which lead us to equations of motion which are non-trivial to be integrated. Here we describe three possible scenarios for the equations of motion, named by timelike, spacelike and lightlike respectively. We started our investigation with a kink-like travelling wave Ansatz for the free theory, which led us to constraints for the dispersion relations of each scenario. We also introduced a procedure to obtain analytical solutions for the general theory in the three mentioned scenarios. We exemplified the procedure and discussed the behavior of the defect solutions carefully. It is remarkable that the methodology presented in this study led to analytical models, despite the complexity of the equations of motion derived from the 2D Myers-Pospelov Lagrangian. The methodology here tailored can be applied to several Lagrangians with higher-order derivative terms.
In this work we have used a Hov{r}ava-Lifshitz scaling to rewrite a Lorentz-violating higher-order derivative electrodynamics controlled by a background four-vector $n_{mu}$. The photon propagator was obtained and we have analyzed the dispersion rela tion and the observational results of gamma-ray burst (GRB) experiments were used. The limits of the critical exponent were discussed in the light of the GRB data and the physical implications were compared with the current GRB-Lorentz-invariance-violation literature. We show that the bound for the Lorentz-violating coupling for dimension-six operators, obtained from a Hov{r}ava-Lifshitz scaling, is eight orders of magnitude better than the result found without considering a Hov{r}ava-Lifshitz scaling, also this bound is nearby one, which is expected to be relevant phenomenologically.
112 - E. Passos , A. Yu. Petrov 2008
We demonstrate generation of the two-dimensional Chern-Simons-like Lorentz-breaking action via an appropriate Lorentz-breaking coupling of scalar and spinor fields at zero as well as at the finite temperature and via the noncommutative fields method and study the dispersion relations corresponding to this action.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا