ترغب بنشر مسار تعليمي؟ اضغط هنا

Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and black holes. Neutron stars are of particular observational interest, as they exhibit surface effects giving rise to phenomena (thermonuclear bursts and pulsations) not seen in black holes. Here we briefly review the present understanding of thermonuclear (type-I) X-ray bursts. These events are powered by an extensive chain of nuclear reactions, which are in many cases unique to these environments. Thermonuclear bursts have been exploited over the last few years as an avenue to measure the neutron star mass and radius, although the contribution of systematic errors to these measurements remains contentious. We describe recent efforts to better match burst models to observations, with a view to resolving some of the astrophysical uncertainties related to these events. These efforts have good prospects for providing complementary information to nuclear experiments.
We present a sample of observations of thermonuclear (type-I) X-ray bursts, selected for comparison with numerical models. Provided are examples of four distinct cases of thermonuclear ignition: He-ignition in mixed H/He fuel (case 1 of Fujimoto et a l. 1981); He-ignition in pure He fuel, following exhaustion of accreted H by steady burning (case 2); ignition in (almost) pure He accumulated from an evolved donor in an ultracompact system; and an example of a superburst, thought to arise from ignition of a layer of carbon fuel produced as a by-product of more frequent bursts. For regular bursts, we measured the recurrence time and calculated averaged burst profiles from RXTE observations. We have also estimated the recurrence time for pairs of bursts, including those observed during a transient outburst modelled using a numerical ignition code. For each pair of bursts we list the burst properties including recurrence time, fluence and peak flux, the persistent flux level (and inferred accretion rate) as well as the ratio of persistent flux to fluence. In the accompanying material we provide a bolometric lightcurve for each burst, determined from time-resolved spectral analysis. Along with the inferred or adopted parameters for each burst system, including distance, surface gravity, and redshift, these data are suggested as a suitable test cases for ignition models.
Periodic dips observed in approx. 20% of low-mass X-ray binaries are thought to arise from obscuration of the neutron star by the outer edge of the accretion disk. We report the detection with the Rossi X-ray Timing Explorer of two dipping episodes i n Aql X-1, not previously a known dipper. The X-ray spectrum during the dips exhibited an elevated neutral column density, by a factor between 1 and almost two orders of magnitude. Dips were not observed in every cycle of the 18.95-hr orbit, so that the estimated frequency for these events is 0.10 (+0.07,-0.05)/cycle. This is the first confirmed example of intermittent dipping in such a system. Assuming that the dips in Aql X-1 occur because the system inclination is intermediate between the non-dipping and dipping sources, implies a range of 72-79 deg. for the source. This result lends support for the presence of a massive (> 2 M_sun) neutron star in Aql X-1, and further implies that approx. 30 additional LMXBs may have inclinations within this range, raising the possibility of intermittent dips in those systems also. Thus, we searched for dips from 24 other bursting systems, without success. For the system with the largest number of dip phases covered, 4U 1820-303, the nondetection implies a 95% upper limit to the dip frequency of 1.4E-3/cycle.
Accreting neutron stars in low-mass X-ray binaries (LMXBs) are candidate high-frequency persistent gravitational wave sources. These may be detectable with next generation interferometers such as Advanced LIGO/VIRGO within this decade. However, the s earch sensitivity is expected to be limited principally by the uncertainty in the binary system parameters. We combine new optical spectroscopy of Cyg X-2 obtained with the Liverpool Telescope (LT) with available historical radial velocity data, which gives us improved orbital parameter uncertainties based on a 44-year baseline. We obtained an improvement of a factor of 2.6 in the orbital period precision and a factor of 2 in the epoch of inferior conjunction T_0. The updated orbital parameters imply a mass function of 0.65 +/- 0.01 M_sun, leading to a primary mass (M_1) of 1.67 +/- 0.22 M_sun (for i=62.5 +/- 4 deg). In addition, we estimate the likely orbital parameter precision through to the expected Advanced LIGO and VIRGO detector observing period and quantify the corresponding improvement in sensitivity via the required number of templates.
Recent theoretical and observational studies have shown that ashes from thermonuclear burning may be ejected during radius-expansion bursts, giving rise to photoionisation edges in the X-ray spectra. We report a search for such features in Chandra sp ectra observed from the low-mass X-ray binary 4U 1728-34. We analysed the spectra from four radius-expansion bursts detected in 2006 July, and two in 2002 March, but found no evidence for discrete features. We estimate upper limits for the equivalent widths of edges of a few hundred eV, which for the moderate temperatures observed during the bursts, are comparable with the predictions. During the 2006 July observation 4U 1728-34 exhibited weak, unusually frequent bursts (separated by <2 hr in some cases), with profiles and alpha-values characteristic of hydrogen-poor fuel. Recurrence times as short as those measured are insufficient to exhaust the accreted hydrogen at solar composition, suggesting that the source accretes hydrogen deficient fuel, for example from an evolved donor. The detection for the first time of a 10.77 min periodic signal in the persistent intensity, perhaps arising from orbital modulation, supports this explanation, and suggests that this system is an ultracompact binary similar to 4U 1820-30.
We report the detection of pulsations at 552 Hz in the rising phase of two type-I (thermonuclear) X-ray bursts observed from the accreting neutron star EXO 0748-676 in 2007 January and December, by the Rossi X-ray Timing Explorer. The fractional ampl itude was 15% (rms). The dynamic power density spectrum for each burst revealed an increase in frequency of approx. 1-2 Hz while the oscillation was present. The frequency drift, the high significance of the detections and the almost identical signal frequencies measured in two bursts separated by 11 months, confirms this signal as a burst oscillation similar to those found in 13 other sources to date. We thus conclude that the spin frequency in EXO 0748-676 is within a few Hz of 552 Hz, rather than 45 Hz as was suggested from an earlier signal detection by Villarreal & Strohmayer (2004). Consequently, Doppler broadening must significantly affect spectral features arising from the neutron star surface, so that the narrow absorption features previously reported from an XMM-Newton spectrum could not have arisen there. The origin of both the previously reported 45 Hz oscillation and the X-ray absorption lines is now uncertain.
We present ongoing Rossi X-ray Timing Explorer (RXTE) monitoring observations of the 377.3 Hz accretion-powered pulsar, HETE J1900.1-2455 Activity continues in this system more than 3 years after discovery, at a mean luminosity of 4.4e36 erg/s (for d =5 kpc), although pulsations were present only within the first 70 days. X-ray variability has increased each year, notably with a brief interval of nondetection in 2007, during which the luminosity dropped to below 1e-3 of the mean level. A deep search of data from the intervals of nondetection in 2005 revealed evidence for extremely weak pulsations at an amplitude of 0.29% rms, a factor of ten less than the largest amplitude seen early in the outburst. X-ray burst activity continued through 2008, with bursts typically featuring strong radius expansion. Spectral analysis of the most intense burst detected by RXTE early in the outburst revealed unusual variations in the inferred photospheric radius, as well as significant deviations from a blackbody. We obtained much better fits instead with a comptonisation model.
We describe observations of the seventh accretion-powered millisecond pulsar, HETE J1900.1-2455 made with the Rossi X-ray Timing Explorer during the year of activity that followed its discovery in 2005 June. We detected intermittent pulsations at a p eak fractional amplitude of 3%, but only in the first two months of the outburst. On three occasions during this time we observed an abrupt increase in the pulse amplitude, approximately coincident with the time of a thermonuclear burst, followed by a steady decrease on a timescale of approx. 10 d. HETE J1900.1-2455 has shown the longest active period by far for any transient accretion-powered millisecond pulsar, comparable instead to the outburst cycles for other transient X-ray binaries. Since the last detection of pulsations, HETE J1900.1-2455 has been indistinguishable from a low-accretion rate, non-pulsing LMXB; we hypothesize that other, presently active LMXBs may have also been detectable initially as millisecond X-ray pulsars.
65 - Michael P. Muno 2003
Previously, observations with the Rossi X-ray Timing Explorer showed that millisecond oscillations occur preferentially in thermonuclear X-ray bursts with photospheric radius expansion from sources rotating near 600 Hz, while they occur with equal li kelihood in X-ray bursts with and without radius expansion for sources rotating near 300 Hz. With a larger sample of data than in previous studies, we find that the detectability of the oscillations is not directly determined by the properties of the X-ray bursts. Instead, we find that (1) the oscillations are observed almost exclusively when the accretion rate onto the neutron star is high, but that (2) radius expansion is only observed at high accretion rates from the 600 Hz sources, whereas it occurs only at low accretion rates in the 300 Hz sources. The persistent millisecond pulsars provide the only apparent exceptions to these trends. The first result might be explained if the oscillation amplitudes are attenuated at low accretion rates by an extended electron corona. The second result indicates that the rotation period of the neutron star determines how the burst properties vary with accretion rate, possibly through the differences in the effective surface gravity or the strength of the Coriolis force.
We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly-magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (R XTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion and were distributed about a mean bolometric flux of 9.2e-8 erg/cm^2/s, while the remaining (non-radius expansion) bursts reached 4.5e-8 erg/cm^2/s, on average. The peak fluxes of the radius-expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius-expansion bursts, with a time scale of approximately 40 d. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar time scale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only approximately 3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that i) the radiation from the neutron star atmosphere during radius-expansion episodes is nearly spherically symmetric, and ii) the radius-expansion bursts reach a common peak flux which may be interpreted as a standard candle intensity.Adopting the minimum peak flux for the radius-expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا